ANALISIS KEMAMPUAN MATEMATIKA DASAR MAHASISWA PENDIDIKAN KIMIA

Ita Chairun Nissa, Baiq Asma Nufida

Abstract


Beberapa literatur dan penelitian terdahulu menyatakan bahwa masih ada kelemahan dalam menggunakan matematika di kelas sains. Pada saat mahasiswa mengalami kegagalan dalam memecahkan masalah kimia yang melibatkan keterampilan matematika, seringkali kita dihadapkan pada pertanyaan apakah kegagalan tersebut disebabkan karena lemahnya kemampuan matematika dasar atau kurangnya penguasaan konsep kimia itu sendiri. Penelitian ini merupakan suatu deskriptif kuantitatif yang melibatkan mahasiswa tingkat satu yang melaksanakan perkuliahan matematika dasar dan kimia umum. Kemampuan matematika dasar mahasiswa dianalisis menurut tiga aspek penilaian; mathematical-procedural skils, conceptual understanding, dan algorithmic problem-solving. Tes pilihan ganda digunakan sebagai alat pengumpul data primer, sedangkan lembar jawaban tertulis digunakan untuk mendapatkan deksripsi seperti apa argumentasi mahasiswa dan bagaimana cara mereka memecahkan masalah. Skor tes dianalisis menggunakan metode statistik deskriptif untuk membandingkan kemampuan mahasiswa pada tiga aspek tersebut. Hasil akhir dari penelitian ini menunjukkan bahwa mahasiswa memiliki kemampuan yang lebih baik pada mathematical-procedural skils dan algorithmic problem-solving dibandingkan pada conceptual understanding.


Full Text:

PDF

References


Akaygun, S., & Aslan-Tutak, F. (2016). STEM images revealing STEM conceptions of pre-service chemistry and mathematics teachers. International Journal of Education in Mathematics, Science and Technology, 4(1), 56–71. https://doi.org/10.18404/ijemst.44833

Bain, K., Rodriguez, J. M. G., Moon, A., & Towns, M. H. (2019). Mathematics in chemical kinetics: Which is the cart and which is the horse? ACS Symposium Series: American Chemical Society, 1316, 25–46. https://doi.org/10.1021/bk-2019-1316.ch003

Basak, S. C. (2013). Philosophy of mathematical chemistry: A personal perspective. Hyle: International Journal for Hilosophy of Chemistry, 19(1), 3–17.

Becker, N., & Towns, M. (2012). Students’ understanding of mathematical expressions in physical chemistry contexts: An analysis using Sherin’s symbolic forms. Chemistry Education Research and Practice, 13(3), 209–220. https://doi.org/10.1039/c2rp00003b

De Zeeuw, A., Craig, T., & You, H. S. (2013). Assessing conceptual understanding in mathematics. Proceedings - Frontiers in Education Conference, FIE, February, 1742–1744. https://doi.org/10.1109/FIE.2013.6685135

Doleck, T., Bazelais, P., Lemay, D. J., Saxena, A., & Basnet, R. B. (2017). Algorithmic thinking, cooperativity, creativity, critical thinking, and problem solving: exploring the relationship between computational thinking skills and academic performance. Journal of Computers in Education, 4(4), 355–369. https://doi.org/10.1007/s40692-017-0090-9

Fahyuddin, F., Liliasari, L., & Sabandar, J. (2012). Tingkat pemahaman mahasiswa pendidikan kimia pada beberapa konsep dasar matematik yang dibutuhkan untuk kelancaran belajar kimia kuantitatif. Jurnal Penelitian Pendidikan Sains, 2(1), 147–153. https://doi.org/10.26740/jpps.v2n1.p147-153

Faulkner, F., Breen, C., Prendergast, M., & Carr, M. (2021). Profiling mathematical procedural and problem-solving skills of undergraduate students following a new mathematics curriculum. International Journal of Mathematical Education in Science and Technology. https://doi.org/10.1080/0020739X.2021.1953625

Gultepe, N., Celik, A. Y., & Kilic, Z. (2013). Exploring effects of high school students’ mathematical processing skills and conceptual understanding of chemical concepts on algorithmic problem solving. Australian Journal of Teacher Education, 38(10), 106–122. https://doi.org/10.14221/ajte.2013v38n10.1

Hoban, R. A., Finlayson, O. E., & Nolan, B. C. (2013). Transfer in chemistry: a study of students’ abilities in transferring mathematical knowledge to chemistry. International Journal of Mathematical Education in Science and Technology, 44(1), 14–35. https://doi.org/10.1080/0020739X.2012.690895

Kapur, M. (2014). Productive failure in learning math. Cognitive Science, 38(5), 1008–1022. https://doi.org/10.1111/cogs.12107

Krosnick, J. A., & Presser, S. (2018). Question and Questionnaire Design. In The Palgrave Handbook of Survey Researc (pp. 263–313). Palgrave Macmillan, Cham. https://doi.org/10.1111/j.1432-1033.1976.tb10115.x

Narwal, L., & Sehrawat, P. (2017). Role of mathematics in chemistry and its future. International Research Journal of Management Science & Technology, 8(3), 39–44.

Ríordáin, M. N., Johnston, J., & Walshe, G. (2016). Making mathematics and science integration happen: Key aspects of practice. International Journal of Mathematical Education in Science and Technology, 47(2), 233–255. https://doi.org/10.1080/0020739X.2015.1078001

Shanahan, C., Shanahan, T., & Misischia, C. (2011). Analysis of expert readers in three disciplines: History, mathematics, and chemistry. Journal of Literacy Research, 43(4), 393–429. https://doi.org/10.1177/1086296X11424071

Star, J. R., & Stylianides, G. J. (2013). Procedural and Conceptual Knowledge: Exploring the Gap Between Knowledge Type and Knowledge Quality. Canadian Journal of Science, Mathematics and Technology Education, 13(2), 169–181. https://doi.org/10.1080/14926156.2013.784828

Suriadi, S., & Dewi, R. (2020). Pengembangan instrumen tes passing bolavoli berbasis digital. Jurnal Prestasi, 4(1), 9–16. https://doi.org/10.24114/jp.v4i1.16821

Wulanzani, U. T., Lestari, U., & Syamsyuri, I. (2016). Hasil validasi buku teks matakuliah biotekologi berbasis bahan alam tanaman pacing (costus speciosus smith) sebagai Antifertilitas. Jurnal Pendidikan: Teori, Penelitian, Dan Pengembangan, 1(9), 1830–1835.




DOI: http://dx.doi.org/10.31000/cpu.v0i0.6852

Article Metrics

Abstract - 496 PDF - 328

Refbacks

  • There are currently no refbacks.