ANALISIS KINERJA DISTRIBUSI INSTALASI PENGOLAHAN AIR (IPA) (STUDI KASUS IPA DAERAH PEJOMPONGAN I)

S. WALUYO WR 1) RIRIS 2)

1) Program Studi Teknik Sipil
Fakultas Teknik
Universitas Muhammadaiyah Tangerang
Jl. Perintis Kemerdekaan I/33, Cikokol Kota Tangerang
http://www.umt.ac.id
waluyo_sidik@yahoo.com

²⁾ Program Pascasarjana Magister Teknik Sipil Universitas Gunadarma Jl. Salemba Raya, Jakarta Pusat http://www.gunadarma.ac.id oweriris@yahoo.com

ABSTRAK

Air adalah zat yang paling penting dalam kehidupan setelah udara, ¾ bagian tubuh kita terdiri dari air dan tidak seorangpun dapat bertahan hidup lebih dari 4-5 hari tanpa minum air. Di samping itu air juga dipergunakan untuk memasak, mencuci, mandi dan membersihkan kotoran yang ada di sekitar rumah,untuk keperluan industri, pertanian, pemadam kebakaran, tempat rekreasi, transportasi.

Peningkatan jumlah penduduk di tiap tahunnya mengakibatkan kebutuhan air bersih yang digunakan tiap hari semakin meningkat. Tentu saja peningkatan kebutuhan air bersih tersebut mempengaruhi ketersediaan air bersih yang berhasil diolah. Untuk memenuhi kebutuhan air bersih tersebut, perlu dilakukan evaluasi dan analisis terhadap kondisi instalasi pengolahan air yang saat ini dengan finansial instalasi tersebut. meninjau aspek teknis dan dari Aspek teknik yang ditinjau adalah evaluasi kondisi unit-unit pengolahan kondisi eksisting terhadap standar kriteriadesain, analisis kapasitas unit-unit pengolahan terhadap kebutuhan air hingga 20 tahun mendatang(Q_{20th}) serta evaluasi kualitas air produksi terhadap standar Peraturan Menteri Kesehatan RI No. 492/Menkes/Per/IV/2010

Sedangkan aspek finansial yang ditinjau adalah analisis pengaruh biaya produksi dan penjualan air bersih terhadap laba kotor IPA Pejompongan I. Variabel yang dikendalikan adalah biaya produksi seperti biaya sumber air bersih dan biaya pengolahan air bersih, biaya penjualan air bersih dan laba kotor. Dalam upaya meningkatkan kualitas pelayanan, diperlukan suatu evaluasi terhadap instalasi pengolahan air agar masalah tersebut dapat dikendalikan.

Tujuan dari penelitian ini adalah untuk menganalisis kondisi eksisting IPA Pejompongan I ditinjau dari aspek teknis, seperti: Memproyeksikan pertumbuhan penduduk di wilayah pelayanan IPA hingga 20 tahun, mengetahui kebutuhan air bersih, menganalisis kapasitas unit instalasi pengolahan air berdasarkan kriteria desain, mengevaluasi kapasitas unit pengolahan air, mengevaluasi kinerja air baku sesuai standar PP 82/2001, mengevaluasi kinerja air hasil produksi sesuai standar Peraturan Menteri Kesehatan RI No. 492/Menkes/Per/IV/2010, dan mengetahui seberapa besar pengaruh biaya sumber air bersih, biaya pengolahan air dan hasil penjualan air bersih terhadap laba kotor yang diterima oleh IPA PJ.

Kata kunci: Analisis kinerja, kebutuhan air bersih, biaya, pertambahan penduduk

BAB 2 TINJAUAN PUSTAKA

2.1 PROYEKSI KEBUTUHAN AIR

2.1.1 Proyeksi Pertumbuhan Penduduk

Dalammerencanakaninstalasipengolahan air minumdiperlukaninformasimengenaikebutuhan air minum di wilayahperencanaan.Kebutuhan air minumsangatditentukanolehkondisiwilayahperencana

pertambahanjumlahpendudukdantingkatsosialekonom ipenduduk yang mempengaruhipolapemakaian air.

Prediksijumlahpenduduk di masa yang akandatingsangatpentingdalammemperhitungkanjuml ahkebutuhan air minum di masa yang akandatang. Prediksiini

didasarkanpadalajuperkembangankotadankecenderu ngannya, arahan tatagunalahansertaketersediaanlahanuntukmenampun gperkembanganjumlahpenduduk.

Denganmemperhatikanlajuperkembanganju mlahpendudukmasalampau, makametodestatistikmerupakanmetode yang paling mendekatiuntukmemperkirakanjumlahpenduduk di masamendatang. Ada beberapametode yang dapatdigunakanuntukmenganalisaperkembanganjuml ahpenduduk di masamendatangyaitu :

a. Metode Arithmatik

Metodeinibiasanyadisebutjugadengan rata-rata

hilang.Metodeinidigunakanapabila data berkalamenunjukkanjumlahpenambaha

n yang relatifsamatiaptahun. Hal initerjadipadakotadenganluaswilayah

yang kecil, tingkatpertumbuhanekonomikotarendah danperkembangankotatidakterlalupesat

danperkembangankotatidakterlalupesa (jujubandung, 2012

Rumusmetodeiniadalah:

$$Ka = \frac{P_2 - P_1}{T_2 - T_1}$$

$$P_n = P_o + Ka (T_n - T_o)$$

Dimana :

 $P_n =$ Jumlah penduduk pada tahun ke-n

 $\begin{array}{lll} P_o &=& Jumlah & penduduk & pada & tahun \\ dasar & & & \end{array}$

 $T_n = Tahun ke-n$

 $T_0 = Tahun dasar$

Ka = Konstanta Arithamtik

 P_1 = Jumlah penduduk yang diketahui pada tahun pertama

 $P_2 = Jumlah penduduk yang diketahui pada tahun terakhir$

 $T_1 \ = Tahun \ pertama \ yang \ diketahui$

T₂ = Tahun terakhir yang diketahui

b. Metode Geometrik

Untukkeperluanproyeksipenduduk, metodeinidigunakanbila data jumlahpendudukmenunjukkanpeningkat an yang pesatdariwaktukewaktu (jujubandung, 2012). Rumus yang dipergunakan dalam metode geometrik adalah:

$$Pn = Po (1+r)^{n}$$

Dimana:

Pn = Jumlah penduduk pada tahun ke-n Po = Jumlah penduduk pada tahun dasar

r = Laju pertumbuhan penduduk

n = Jumlah interval waktu

c. Metode Least Square Rumus yang digunakan dalam metode least square adalah:

$$Y = a + b.X$$

$$a = \frac{\left(\sum Y * \sum X^{2}\right) - \left(\sum X * \sum XY\right)}{\left(n * \sum X^{2}\right) - \left(\sum X\right)^{2}}$$

$$b = \frac{\left(n * \sum XY\right) - \left(\sum X * \sum Y\right)}{\left(n * \sum X^{2}\right) - \left(\sum X\right)^{2}}$$

Dimana:

Y = Nilai variabel berdasarkan garis

regresi

X = Variabel independent

a = konstanta

b = koefisien arah regresi linear

Agar perkiraan jumlah penduduk pada masa yang akan datang mendekati kebenarannya, maka dipilih salah satu cara yang tepat melalui metode korelasi sebagai dasar pemilihan, dimana data penduduk aktual dihubungkan dengan perhitungan ketiga metode tersebut. Bilamana nilai r (koefisien korelasi) yang mendekati nilai 1 (satu), berarti hubungan terjadi hubungan yang sangat kuat atau mendekati kebenaran.

Adapun rumus koefisien korelasi adalah sebagai berikut:

$$r_{xy} = \frac{\sum xy}{\sqrt{\left(\sum x^2\right)\left(\sum y^2\right)}}$$

Untuk memberikan interprestasi koefisien korelasi dapat dilihat pada tabel dibawah ini :

Tabel2.1 Pedoman Untuk Memberikan Interpretasi Koefisien Korelasi

Rochsten Roleiusi				
Interval Koefisien	Tingkat Hubungan			
0,00 -0,199	Sangat Rendah			
0,20-0,399	Rendah			
0,40-0,599	Sedang			
0,60-0,799	Kuat			
0,8-1,00	Sangat Kuat			

Sumber : Metode Penelitian Administrasi, Sugiono, 2007

2.1.2 Kebutuhan Air Bersih Domestik Dan Non Domestik

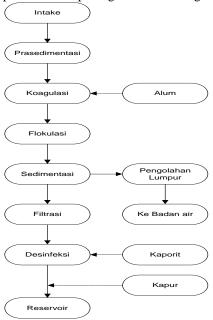
Air bersih adalah air yang digunakan untuk keperluan sehari – hari yang kualitasnya memenuhi syarat kesehatan dan dapat diminum apabila telah dimasak. Umumnya kebutuhan air untuk berbagai macam tujuan dapat dibagi menjadi:

1. Kebutuhan Domestik

Kebutuhan domestik meliputi:

- 1. Sambungan Rumah ialah meliputi sambungan langsung dari perpipaan tersier melalui meteran air ke rumah pelanggan
- 2. Hidran Umum ialah sarana pelayanan air bersih yang digunakan secara bersama-sama (komunal),berupa tangki penampungan baik sambungan langsung dari perpipaan maupun diisi melalui mobil tangki.

2. Kebutuhan Non Domestik


- Kebutuhan institusi,yaitu kebutuhan kebutuhan air untuk sekolah, rumah sakit, gedung-gedung pemerintah,tempat ibadah dan lain-lain.
- 2. Kebutuhan industri dan niaga, yaitu kebutuhan untuk industri berupa industri kecil, menengah dan besar,sama halnya dengan niaga seperti toko-toko, swalayan, supermarket dan lain-lain.

2.2 SISTEM PENGOLAHAN AIR

Tujuan dari sistem pengolahan air minum yaitu untuk mengolah sumber air baku menjadi airminum yang sesuai dengan standar kualitas, kuantitas, dan kontinuitas. Tingkat pengolahan air minum ini tergantung pada karakteristik sumber air baku yang digunakan. Sumber air baku berasal dari air permukaan dan air tanah. Air permukaan cenderung memiliki tingkat kekeruhan yang cukup

tinggi dan adanya kemungkinan kontaminasi oleh mikroba yang lebih besar. Untuk pengolahan sumber air baku yang berasal dari air permukaan ini,unit filtrasi hampir selalu diperlukan. Sedangkan air tanah memiliki kecenderungan untuk tidak terkontaminasi dan adanya padatan tersuspensi yang lebih sedikit.

Secara umum,proses pengolahan air minum dengan sumber air baku yang berasal dari air permukaan dapat digambarkan sebagai berikut:

Gambar 2.1 Skema Pengolahan Air Minum

2.3 UNIT INSTALASI PENGOLAHAN AIR 2.3.1 Koagulasi

Koagulasi didefinisikan sebagai destabilisasi muatan pada koloid dan partikel tersuspensi, termasuk bakteri dan virus oleh suatu koagulan. Pengadukan cepat (*flash mixing*) merupakan bagian terintegrasi dari proses ini. Secara umum proses koagulasi berfungsi untuk:

- Mengurangi kekeruhan akibat adanya partikel koloid anorganik maupun organik di dalam air
- Mengurangi warna yang diakibatkn oleh partikel koloid di dalam air
- Mengurangi bakteri-bakteri patogen dalam partikel koloid, algae, dan organisme plankton lain
- Mengurangi rasa dan bau yang diakibatkan oleh partikel koloid dalam air.

Pengadukan cepat (Rapid Mixing)

Tipe alat yang biasanya digunakan untuk memperoleh intensitas pengadukan adan gradien kecepatan yang tepat bisa diklasifikasikan sebagai berikut:

a. Pengaduk Mekanis

Pengadukan secara mekanis adalah metode palingumum digunakan karena vang dapat diandalkan. metodeini sangat efektif,dan fleksibel pada pengoperasiannya. Biasanya pengadukan cepat menggunakan turbine impeller, paddle impeller atau propeller untuk menghasilkan turbulensi (Reynolds, 1982). Pengadukan tipe ini pun tidak terpengaruh oleh variasin debit dan memiliki headloss yang sangat kecil.

b. Pengaduk Pneumatis

Tipe ini mempergunakan tangki dan peralatan aerasi yang hampir mirip dengan peralatan yang digunakan pada proses lumpur aktif. Rentang waktudetensi dan gradien kecepatan yang digunakan sama dengan pengadukan secara mekanis. Pengadukan tipe ini tidak terpengaruh oleh variasi debit memiliki headloss yang relatif kecil.

c. Pengaduk Hidrolis

Pengadukan secara hidrolis dapat dilakukan dengan beberapa metode, antara lain dengan menggunakan baffle basins, weir, flume dan loncatan hidrolis. Pengadukan jenis ini memanfaatkan energi dalam aliran yang menghasilkan nilai gradien kecepatan (G) yang tinggi,serta tidakperlu mengimpor peralatan, mudah dioperasikan,dan pemeliharaan minimal yang (Schulz/Okun,1984). Tetapi metodde ini memiliki kekurangan antara lain tidak bisa disesuaikan dengan keadaan dan aplikasinya sangat terbatas pada debit yang spesifik.

Tabel 2.3 Kriteria Desain Unit Koagulasi						
Paramet		Sumber				
er						
	Qasi	SNI	Delpho	Darmasetia		
	m,et	6774	s,et al	wan (2001)		
	al	2008	(AWW			
	(2000		A			
)		2004)			
Dosis	20			25-40 ppm		
koagula	ppm					
n (ppm)						
Gradien	100-	> 750	150-	200-1000		
kecepata	1000		300			
n (1/dtk)						
Kondisi				>10000		
aliran						
Waktu	10	1-5	30	< 1 menit		
detensi	detik	menit	detik			
(menit)	- 5					
	menit					
Sumber :	Ossim S	NT 2008	Deplhos	Darmasetiawa		

2.3.2 Flokulasi

Flokulasiadalahtahappengadukanlambat yang mengikuti unit pengadukcepat.Tujuandari proses

iniadalahuntukmempercepatlajutumbukanpartikel,

halinimenyebabkanaglomerasidaripartikelkoloidterde stbalisasissecaraelektronikakepadaukuran yang terendapkandantersaring.

2.3.3 Sedimentasi

Sedimentasiadalahpemisahanpadatandancair andenganmenggunakanpengendapansecaragravitasiu ntukmemisahkanpartikeltersuspensi yang terdapatdalamcairantersebut (Reynolds, 1982). Proses inisangatumumdigunakanpadainstalasipengolahan air minum.

Aplikasiutamadarisedimentasipadainstalasipengolaha n air minumadalah :

- 1. Pengendapanawaldari air permukaansebelumpengolahanoleh unit saringanpasircepat
- Pengendapan air yang telahmelalui proses koagulasidanflokulasipadainstalasi yang menggunakansystempelunakan air olehkapur-soda
- 3. Pengendapan air yang telahmelalui proses koagulasidanflokulasisebelummemasuk i unit saringanpasircepat
- 4. Pengendapan air padainstalasipemisahanbesidanmangan

2.3.4 Filtrasi

Filtrasi adalah proses pemisahan padatan dan larutan,dimana larutan tersebut dilewatan melalui suatu media berpori atau materi berpori lainnya untuk menyisihkan partikel tersuspensi yang sangat halus sebanyak mungkin. Proses ini digunakan pada instalasi pengolahan air minum untuk menyaring air yang telah dikoagulasi dan diendapkan untuk menghasilkan air minum dengan kualitas yang baik.

Media Penyaring

Berdasarkan jenis media penyaring yang digunakan,saringan pasir cepat ini dapat dikategorikan menjadi tiga, yaitu :

- 1. Filter media tunggal
 - Filter jenis ini mempergunakan satu jenis media saja,biasanya pasir atau batu bara antrasit yang dihancurkan.
- 2. Filter media ganda

Mempergunakan dua jenis media, biasanya merupakan gabungan dari pasir dan batu bara antrasit yang dihancurkan.

- 3. Filter multimedia
 - Filter jenis ini mempergunakan tiga jenis media, biasanya sebagai tambahan dari kedua media yang telah disebutkan diatas diaplikasikan jenis media ketiga yaitu batu akik.

Saringan pasir dikarakterisasi oleh ukuran efektif dan koefisien keseragaman dari pasir yang digunakan sebagai media filtrasi. Sebagian besar saringan pasir cept memiliki pasir dengan ukuran efektif antara 0,35 sampai 0,50 mm dan memiliki nilai koefisien keseragaman antara 1,3 sampai 1,7. Karakteristik media filtrasi yang secara umum digunakan dapat dilihat pada tabel dibawah ini :

	stik Media	
 		_

Materi	Bentuk	Spherit	Berat	Porosit	Ukuran
al		88	jenis	88	efektif
			relatif	(%)	Mm
Pasir	Rounde		0,82	42	0,4-1,0
Silika	d				
Pasir	Angula		0,73	53	0,4-1,0
Silika	f				
Pasir	Spheric		0,95	40	0,4-1,0
Ottawa	al				
Kerikil	Rounde			40	1,0 - 50
Silika	d				
Gamet					0,2-1,4
Anthra	Angula		0,72	55	0,2-1,4
sit	f				
Plastik	Bisa dipilih sesuai kebutuhan				

Sumber: Droste, 1997

Media Penyangga

Media penyangga ini berfungsi sebagai penyangga media penyaring yang diletakkan pada bagian bawah media penyaring tersebut.

Sistem Underdrain

Sistem underdrain berfungsi untuk mengumpulkan air yang telah difiltrasi oleh media penyaring pada saat saringan pasir cepat beroperasi, sedangkan ketika backwash sistem ini berfungsi untuk mendistribusikan air pencucian.

1. Jumlah air untuk backwash

=1-5% air terfiltrasi

Karakteristik	Catuan	Nila	Nilai		
Karakteristik	Satuan	Rentang	Tipikal		
Antrasit					
Kedalaman	cm	45.72-60.96	60.96		
Ukuran Efektif	mm	0.9-1.1	1.0		
Koefisien Keseragaman		1.6-1.8	1.7		
Pasir					
Kedalaman	cm	15.24-20.32	15.24		
Ukuran Efektif	mm	0.45-0.55	0.5		
Koefisien Keseragaman		1.5-1.7	1.6		
Laju Filtrasi	m ³ /hr-m ²	176-469.35	293.34		

Selain kriteria desain diatas, ada pula kriteria desain menurut Fair, Geyer dan Okun (1968) :

1.	Kecepatan filtrasi	= 5 - 7,5
	m/jam	

2. Kecepatan backwash = 15 - 100 m/jam

3. Luas permukaan filter $= 10 - 20 \text{ m}^2$

4. Ukuran media:

3. Ukuran efektif = 0.5 - 0.6 mm

4.	Koefisien keseragaman	= 1,5
5.	Tebal media penyaring	= 0.45 -
	2 m	
6.	Tebal media penunjang	=0,15 -
	0,65 m	
5.	Luas orifice : Luas media	=(1,5-
	5) x10 ⁻³ :1	
6.	Luas lateral: Luas orifice	= 2 - 4:
	1	
7.	Luas manifold : luas lateral	=(1,5-3):1
_	F : 10	0.0.

8. Diameter orifice = 0,25 – 0.75inchi

9. Jarak antara orifice terdekat = 3 - 12 inchi 10. Jarak antar pusat lateral terdekat = 3 - 12

inchi

11. Kecepatan aliran dalam saluran inlet= 0,6 – 1,8 m/s

12. Kecepatan aliran dalam saluran outlet = 0.9 - 1.8 m/s

13. Kecepatan dalam saluran pencuci = 1,5 – 3,7 m/s

14. Kecepatan dalam saluran pembuangan = 1,2 – 2,5 m/s

Sedangkan kriteria desain saringan pasir cepat menurut SNI 2008 dapat dilihat pada tabel dibawah ini:

Tabel 2.5 Kriteria Desain Saringan Cepat Sesuai SNI 6774 2008

		Jenis Saringan				
No	Unit	Saringan Biasa (Gravitasi)	Saringan dg Pencucian Antar Saringan	Saringan Bertekanan		
1.	Jumlah bak saringan	N = 12 Q 0,5 *)	minimum 5 bak	-		
2.	Kecepatan penyaringan (m/jam)	6 – 11	6 – 11	12 – 33		
3.	Pencucian: • Sistem pencucian	Tanpa/dengan blower & atau surface wash	Tanpa/dengan blower & atau surface wash	Tanpa/dengan blower & atau surface wash		
	 Kecepatan (m/jam) 	36 - 50	36 – 50	72 – 198		
	 lama pencucian (menit) 	10 – 15	10 – 15	-		
	 periode antara dua pencucian (jam) 	18 – 24	18 – 24	-		
	 ekspansi (%) 	30 - 50	30 - 50	30 - 50		
4.	Media pasir: tebal (mm) singel media media ganda	300 – 700 600 – 700 300 -600	300 – 700 600 – 700 300 – 600	300 – 700 600 – 700 300 -600		
	 Ukuran efektif,ES (mm) 	0,3 - 0,7	0,3 - 0,7	-		
	Koefisien keseragaman ,UC	1,2 – 1,4	1,2 – 1,4	1,2 – 1,4		
	 Berat jenis (kg/dm³) 	2,5 - 2,65	2,5 - 2,65	2,5 - 2,65		
	 Porositas 	0,4	0,4	0,4		
	 Kadar SiO₂ 	> 95 %	> 95 %	> 95 %		

		Jenis Saringan			
No	Unit	Saringan Biasa (Gravitasi)	Saringan dg Pencucian Antar Saringan	Saringan Bertekanan	
5.	Media antransit:				
	tebal (mm)	400 - 500	400 - 500	400 - 500	
	• ES (mm)	1,2 - 1,8	1,2 - 1,8	1,2 - 1,8	
	• UC `	1,5	1,5	1,5	
	 berat jenis (kg/dm³) 	1,35	1,35	1,35	
	porositas	0,5	0,5	0,5	
ô.	Filter botom/dasar				
	saringan				
	1)Lapisan penyangga				
	dari atas ke bawah				
	 Kedalaman (mm) 	80 – 100	80 - 100		
	Ukuran butir (mm)	2 – 5	2-5	-	
	 Kedalaman (mm) 	80 – 100	80 – 100	-	
	Ukuran butir (mm)	5 – 10	5 – 10	-	
	 Kedalaman (mm) 	80 – 100	80 – 100	-	
	Ukuran butir (mm)	10 – 15	10 – 15		
	Kedalaman (mm)	80 - 150	80 - 150	-	
	Ukuran butir (mm)	15 – 30	15 – 30	-	
	2)Filter Nozel				
	 Lebar Slot nozel (mm) 	< 0,5	< 0,5	< 0,5	
	Prosentase luas slot				
	nozel terhadap luas	> 4 %	> 4 %	> 4 %	
	filter (%)				

2.3.5 Desinfektan

Desinfektan air bersih dilakukan untuk menonaktifkan dan menghilangkan bakteri pathogen untuk memenuhi baku mutu air minum. Khlorin biasanya disuplai dalam bentuk cairan. Ukuran dari wadah khlorin biasanya bergantung pada kuantitas khlorin yang digunakan,teknologi yang dipakai,ketersediaan tempat dan biaya transportasi dan penanganan. Metode yang dapat digunakan untuk mencampur khlorin dengan air adalah metode mekanis dengan penggunaan baffle,hydraulic jump,pompa booster pada saluran.

Kriteria desain menurut Qasim, Motley & Zhu,2000,pg.491:

- 1. Waktu detensi = 10 120 menit
- 2. Dosis khlor = 0,2-4 mg/L
- 3. Sisa khlor

= 0.5-1 mg/L

2.3.6 Reservoir.

Reservoir terdiri dari dua jenis yaitu ground storage reservoir dan elevated storage reservoir.

Kriteria desain:

- 1. Jumlah unit atau kompartemen > 2
- 2. Kedalaman (H) = (3-6)m
- 3. Tinggi jagaan (Hj) > 30cm
- 4. Tinggi air minimum (Hmin) =15 cm
- 5. Waktu tinggal (td) > 1 jam

2.4 KUALITAS AIR

Berdasarkan Peraturan Pemerintah RI No 82 Tahun 2001 tentang pengelolaan kualitas air dan pengendalian pencemaran air pasal 8 disebutkan bahwa klasifikasi mutu air menjadi 4 (empat) kelas, yaitu:

- 1. Kelas satu ; air yang peruntukkannya dapat digunakan untuk air baku air minum, dan atau peruntukkan lain yang mempersyaratkan mutu air yang sama dengan kegunaan tersebut.
- 2. Kelas dua ; air yang peruntukkannya dapat digunakan untuk prasarana/sarana rekreasi air, pembudidayaan ikan air tawar, peternakan, air untuk mengairi pertanaman dan lainnya yang mempersyaratkan mutu air yang sama dengan kegunaan tersebut.
- 3. Kelas tiga ; air yang peruntukkannya dapat digunakan untuk pembudidayaan ikan air tawar, peternakan, air untuk mengairi pertanaman, dan lainnya.
- Kelas empat ; air yang peruntukkannya dapat digunakan untuk mengairi, pertanaman dan lainnya yang

mempersyaratkan mutu air yang sama dengan kegunaan tersebut.

Standar kualitas air minum yang berlaku di Indonesia ditetapkan berdasarkan Peraturan Menteri Kesehatan RI No. 416/MENKES/PER/IX/1990 yang telah diperbaharui dengan Keputusan Menteri Kesehatan RI No. 492/Menkes/Per/IV/2010 Tanggal 19April 2010 tentang Persyaratan Kualitas Air Minum dapat dilihat pada lampiran 1.

2. 5 BIAYA PRODUKSI DAN LAPORAN LABA RUGI

2. 5.1 Biaya Produksi

Biaya adalah pengeluaran-pengeluaran atau nilai pengorbanan untuk memperoleh barang atau jasa yang berguna untuk masa yang akan datang atau mempunyai manfaat melebihi satu periode akuntansi.

2.5.2 Laporan Laba Rugi

Laporan keuangan merupakan hasil akhir dari suatu proses pencatatan,yang merupakan suaturingkasan dari transaksi-transaksi keuangan yang terjadi selama tahunn buku suatu perusahaan, yang digunakan sebagai alat untuk komunikasi antara data keuangan tersebut. Jadi, laporan laba rugi merupakan suatu ikhtisar pendapatan dan beban yang terjadi mencerminkan hasil pelaksanaan keputusan operasi manajemen dan merupakan kinerja perusahaan selama satu periode akuntansi.

2.5.3 Laba Kotor

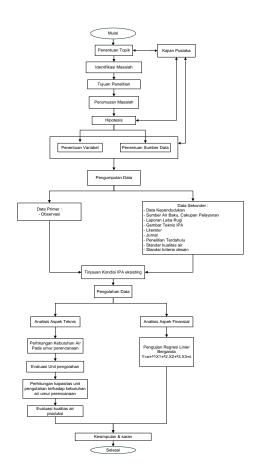
Laba kotor dipengaruhi oleh faktor-faktor yang menentukan besarnya laba kotor, yaitu :

- Faktor penjualan, yang terdiri atas harga jual satuan dan kuantitas atau volume penjualan. Penyimpangan laba kotor dapat disebabkan perusahaan menjual produk dengan harga jual lebih besar atau jauh lebih kecil daripada harga jual yang direncanakan
- Faktor harga pokok penjualan. Harga pokok penjualan terdiri dari banyak unsur tergantung pada jenis perusahaannya.

2. 5.4 Hubungan Dan Pengaruh Biaya Produksi Terhadap Laba Kotor

Laba kotor merupakan nilai penjualan setelah dikurangkan dengan harga pokok penjualan. Jadi nilai dan perubahan laba kotor dipengaruhi oleh unsur penjualan dan harga pokok penjualan. Biaya produksi dan penjualan merupakan unsur yang membentuk laba kotor.

BAB 3


METODE PENELITIAN

1. PENDEKATAN PENELITIAN

Dalam upaya mencapai tujuan penelitian ini,maka diperlukan data yang valid dan reliabel. Data yang didapatkan pada penelitian ini berasal dari observasi langsung ke instalasi,wawancara dan diskusi dengan petugas instalasi departemen Distribution Monitoring Control System PT.XYZ serta pengumpulan data sekunder dari berbagai instansi terkait.

2. ALUR PENELITIAN

Alur penelitian ini menggunakan pendekatan studi kasus dengan berbagai metode statistik didalamnya dan bantuan program SPSS versi 17. Alur penelitian dapat dilihat pada Gambar 3.1.

Gambar 3.1 Alur Penelitian

3. TEKNIK PENGUMPULAN DATA

Dalam suatu penelitian, teknik pengumpulan data merupakan suatu langkah inti. Dalam pengumpulan data dituntut pengetahuan agar data yang terkumpul benar – benar data yang dibutuhkan. Dalam penelitian ini, teknik pengumpulan data yang digunakan adalah:

a. Observasi

Observasi dilakukan ke instalasi pengolahan air pejompongan I selama 1 hari.

b. Studi Pustaka

Sebelum melakukan observasi atau kunjungan instalasi, dilakukan terlebih dahulu studi pustaka dalam pengolahan air bersih.

4. VARIABEL PENELITIAN

Variabel-variabel yang diperlukan dalam penelitian ini dibagi dalam 2 aspek, yaitu aspek teknis dan aspek finansial.

a. Aspek teknis

Variabel penelitian yang diperlukan adalah :

- Jumlah penduduk yang berada di wilayah UPP (Unit Pelayanan Palyja) Pusat
- 2. Kapasitas air produksi
- 3. Dimensi unit instalasi pengolahan
- 4. Parameter-parameter kualitas air

b. Aspek finansial

- 1. Variabel bebas pertama (variabel X_1) yaitu variabel biaya sumber air.
- Variabel bebas kedua (variabel X₂) yaitu variabel yang biaya pengolahan air bersih.
- 3. Variabel bebas ketiga (variabel X₃) yaitu variabel penjualan air bersih.
- 4. Variabel terikat (variabel Y) yaitu variabel laba kotor

5. METODE ANALISIS DATA

Metode analisis data yang dilakukan pada penelitian dibagi kedalam aspek teknis dan aspek finansial.

3.5.1 Metode Statistik Untuk Proyeksi Penduduk

a. Metode Aritmatika

Metode ini biasanya disebut juga dengan rata-rata hilang. Rumus metode ini adalah:

$$Pn = P_0 + Ka (T_n-T_0)$$
(3.1)

$$Ka = \frac{P_2 - P_1}{T_2 - T_1}$$
(3.2)

Dimana:

 P_n = jumlah penduduk tahun ke-n

 P_0 = jumlah penduduk awal

Ka = rasiopertambahan penduduk tiap tahun

T_n = tahun yang diproyeksi

 T_0 = tahun awal

b. Metode Geometrik

Untuk keperluan proyeksi penduduk,metode ini digunakan bila data jumlah penduduk menunjukkan peningkatan yang pesat dari waktu ke waktu. Rumus metode geometrik:

$$P_n = P_0 (1 + r)^n$$

Dimana:

 P_n = jumlah penduduk tahun yang diproyeksi

 P_0 = jumlah penduduk tahun awal

r = rata-rata angka pertumbuhan penduduk tiap tahun

n = jangka waktu

c. Metode Regresi Linear

Metode regresi linear dilakukan dengan menggunakan persamaan :

$$y = a + bx$$

$$a = \frac{\sum y \sum x^2 - \sum x \sum (xy)}{N \sum x^2 - (\sum x)^2}$$

$$b = \frac{N \sum (xy) - \sum x \sum y}{N \sum x^2 - (\sum x)^2}$$
.....(3.5)

Dimana:

y = jumlah penduduk pada tahun perencanaan

a, b = konstanta

x = tambahan tahun terhitung dari tahun awal

3.5.2 Dasar Pemilihan Metode Proyeksi Penduduk

Korelasi, r, dapat dihitung dengan menggunakan rumus : $\dot{}$

Kriteria korelasi adalah sebagai berikut:

$$= \frac{\sum (P_n - P_r)^2 - \sum (P_n - P)^2}{\sum (P_n - P_r)^2}$$

- r < 0, korelasi kuat, tetapi bernilai negatif dan hubungan diantara keduanya dan berbanding terbalik
- 2. r = 0, kedua data tidak memiliki hubungan
- 3. r > 1, terdapat hubungan positif dan diperoleh korelasi yang kuat, diantara kedua variabel memiliki hubungan yang berbanding lurus.

Metode proyeksi yang dipilih adalah metode dengan koefisien korelasi paling besar.

3.5.3 Metode Statistik Untuk Aspek Finansial

. Dalam metode ini, penulis menggunakan metode regresi linear berganda untuk menganalisis pengaruh biaya produksi air bersih, penjualan air bersih terhadap laba kotor, dengan model regresi dan bantuan program SPSS ver 16 sebagai berikut :

$$Y = f(X_1, X_2, X_3)$$
.....(3.8)

Sedangkan persamaan regresinya sebagi berikut :

$$Y = \alpha (3.9)^{\beta_1} \cdot X_1 + {}^{\beta_2} \cdot X_2 + {}^{\beta_3} \cdot X_3 + \varepsilon$$

Dimana:

Y = variabel terkait

 α , $^{\beta}$ = konstanta

 $_{1, \beta_{2, \beta_{3}}}^{\beta_{1, \beta_{2, \beta_{3}}}} = \text{koefisien regresi}$

 $X_1, X_2, X_3 = \text{variabel regresi}$

 ε = standar eror

Untuk mengetahui pengaruh dan hubungan antara variable bebas dan variable terikat dilakukan pengujian hipotesis parsial (uji t statistik) dan hipotesis serentak (uji f statistik).

(data dilihat pada tabel print out coefficient)

$$f_{hitung}$$
 (uji f) = MS Regresi : MS Residual (3.11)

(data dilihat pada tabel print out ANOVA)

BAB 4

HASIL DAN PEMBAHASAN

4.1 DATA STATISTIK PENDUDUK

Kabupaten	Kecamatan
Jakarta Utara	Penjaringan . Pademangan
Jakarta Pusat	Sawah Besar, Gambir, Tanah Abang
Jakarta Barat	Tambora, Grogol Petamburan
Jakarta Selatan	Setia Budi

Gambar 4.1 Wilayah UPP Pusat

4.2 PROYEKSI PENDUDUK

Tabel 4.1 Data Pertumbuhan Penduduk Dari Tahun 1990 - 2011

Tahun	Jumlah Penduduk	Tahun	Jumlah Penduduk				
1990	1.126.343	2007	828.179				
2000	1.316.731	2008	1.127.179				
2003	889.483	2009	1.121.022				
2004	886.493	2010	1.254.488				
2005	861.795	2011	1.368.397				
2006	883.550						

Sumber: BPS Pusat

Data Penduduk Wilayah UPP Pusat Tahun 1990-2011 2,000,000 1920202020202020202020 9000030405060708091011 Penduduk 1, 1, 8888868882 1, 1, 1, 1, 1,

Gambar 4.2 Grafik Data Penduduk Wil UPP Pusat Thn 1990/2011

4.2.1 Metode Aritmatika

Rumus yang dipergunakan dalam metode aritmatika

4.2.2 Metode Geometrik

Rumus yang dipergunakan dalam metode geometrik

4.2.3 Metode Least Square

Rumus yang digunakan dalam metode ini adalah :

$$\begin{split} y &= a + bx \\ a &= \frac{\sum y \sum x^2 - \sum x \sum (xy)}{N \sum x^2 - (\sum x)^2} \\ b &= \frac{N \sum (xy) - \sum x \sum y}{N \sum x^2 - (\sum x)^2} \end{split}$$

Sumber: Hasil Perhitungan

Hasil Perhitungan Proyeksi (3 Metode) 2,000,000 0 \[\sum_{\sum_{\colored}} \sum_{\cut_{

Grafik 2. Hasil Perhitungan Proyeksi Dengan 3 Metode

4.3 KEBUTUHAN AIR BERSIH

Pada umumnya kebutuhan air untuk berbagai macam tujuan dapat dibagi menjadi :

- 1. Kebutuhan Domestik
- 2. Kebutuhan Non Domestik

4.3.1 Prediksi Jumlah Kebutuhan Air Domestik

4.3.1.1 Jumlah Kebutuhan Air Bersih SR

Jumlah jiwa yang dilayani (SR) = Jumlah penduduk x tingkat pelayanan

Tabel 4.4 Prediksi Jumlah Kebutuhan Air Sambungan Rumah (SR)

Sampai Dengan Tahun 2032

Tahun	Jumlah Penduduk Dilayani	Jumlah Pemakaian	Jumlah Kebutuhan Air SR		
	(SR) (orang)	(ltr/org/hari)	m²/hari	îtr/detik	
(1)	(2)	(3)	(4) = (2 x 3) / 1000	(5) = (4) / 86,4	
2012	1.103.939	150	165.591	1.917	
2013	1.113.160	150	166.974	1.933	
2014	1.122.381	150	168.357	1.949	
2015	1.131.602	150	169.740	1.965	
2016	1.140.823	150	171.123	1.981	
2017	1.150.044	150	172.507	1.997	
2018	1.159.265	150	173.890	2.013	
2019	1.168.486	150	175.273	2.029	
2020	1.177.708	150	176.656	2.045	
2021	1.186.929	150	178.039	2.061	
2022	1.196.150	150	179.422	2.077	
2023	1.205.371	150	180.806	2.093	
2024	1.214.592	150	182.189	2.109	
2025	1.223.813	150	183.572	2.125	
2026	1.233.034	150	184.955	2.141	
2027	1.242.255	150	186.338	2.157	
2028	1.251.476	150	187.721	2.173	
2029	1.260.697	150	189.105	2.189	
2030	1.269.919	150	190.488	2.205	
2031	1.279.140	150	191.871	2.221	
2032	1.288.361	150	193.254	2.237	

Sumber: Hasil perhitungan

Keterangan : 86,4 = (24 jam x 60 menit x 60)

detik) / 1.000 liter

4.3.1.2 Jumlah Kebutuhan Air Bersih HU/KU

Tahun	Jumlah Unit (HU)	Jumlah Pemakaian	Jumiah Keb HU/	
	(orang)	(ltr/org/hari)	m³/hari	îtr/detik
(1)	(2)	(3)	(4) = (2 x 3) / 1000	(5) = (4) /86,4
2012	275.985	40	11.039	128
2013	278.290	40	11.132	129
2014	280.595	40	11.224	130
2015	282.901	40	11.316	131
2016	285.206	40	11.408	132
2017	287.511	40	11.500	133
2018	289.816	40	11.593	134
2019	292.122	40	11.685	135
2020	294.427	40	11.777	136
2021	296.732	40	11.869	137
2022	299.037	40	11.961	138
2023	301.343	40	12.054	140
2024	303.648	40	12.146	141
2025	305.953	40	12.238	142
2026	308.259	40	12.330	143
2027	310.564	40	12.423	144
2028	312.869	40	12.515	145
2029	315.174	40	12.607	146
2030	317.480	40	12.699	147
2031	319.785	40	12.791	148
2032	322.090	40	12.884	149

Sumber: Hasil perhitungan

Keterangan : 86,4 = (24 jam x 60 menit x 60)

detik) / 1.000 liter

Sehingga, dapat diprediksikan total kebutuhan air sektor domestik untuk penduduk di wilayah UPP Pusat hingga pada tahun 2032 adalah sebagai berikut:

Tabel 4.6 Total Kebutuhan Air Untuk Sektor Domestik

	Kebutuha	Air Bernih	Predikai	
Tahun	SR	HU	Kebutuhan A Dome	
	milhari	milhari	mi/hari	Iteldetik
(1)				(5) -
	(2)	(3)	(4)- (2) + (3)	(4)/86,4
2012	165.591	11.039	176.630	2.044
2013	166.974	11.132	178.106	2.061
2014	168.357	11.224	179.581	2.078
2015	169.740	11.316	181.056	2.096
2016	171.123	11.408	182.532	2.113
2017	172.507	11.500	184.007	2.130
2018	173.890	11.593	185.482	2.147
2019	175.273	11.685	186.958	2.164
2020	176.656	11.777	188.433	2.181
2021	178.039	11.869	189.909	2.198
2022	179.422	11.961	191.384	2.215
2023	180.806	12.054	192.859	2.232
2024	182.189	12.146	194.335	2.249
2025	183.572	12.238	195.810	2.266
2026	184.955	12.330	197.285	2.283
2027	186.338	12.423	198.761	2.300
2028	187.721	12.515	200.236	2.318
2029	189.105	12.607	201.712	2.335
2030	190.488	12.699	203.187	2.352
2031	191.871	12.791	204.662	2.369
2032	193.254	12.884	206.138	2.386

Sumber: Hasil perhitungan

Keterangan : 86,4 = (24 jam x 60 menit x 60 detik) / 1.000 liter

4.3.2 Prediksi Jumlah Kebutuhan Air Non Domestik

Perhitungan kebutuhan air non domestik untuk wilayah kategori Kota Metropolitan ini diprediksikan dengan kriteria berdasarkan standar dari Dirjen Cipta Karya Dinas Pekerjaan Umum Tahun 1996

4.3.2.1 Jumlah Kebutuhan Air Bersih Untuk Sarana Pendidikan

Jumlah kebutuhan air (pendidikan)
= jumlah jiwa yang dilayani x
jumlah pemakaian
(pada tahun 2012)
= 316.536 jiwa x 10 lt/org/hari :
1000

 $= 3.165 \text{ m}^3/\text{hari} = 36,64 \text{ lt/detik}$

4.3.2.2 Jumlah Kebutuhan Air Bersih Untuk Sarana Kesehatan

Jumlah kebutuhan air (kesehatan) = jumlah unit yang dilayani x jumlah pemakaian (pada tahun 2012)

 $= 1.134 \; unit \; x \; 2000 \; lt/unit/hari \; : \\ 1000 \;$

= 2.268 m3/hari = 26,25 lt/detik.

4.3.2.3 Jumlah Kebutuhan Air Bersih Untuk Sarana Peribadatan

Jumlah kebutuhan air (peribadatan) = jumlah unit yang dilayani x jumlah pemakaian (pada tahun 2012)

= 1.151 unit x 3000 lt/unit/hari : 1000

 $= 3.453 \text{ m}^3/\text{hari} = 39,97 \text{ lt/detik}$

4.3.2.4 Jumlah Kebutuhan Air Bersih Untuk Sarana Penginapan

Jumlah kebutuhan air (penginapan) = jumlah bed yang dilayani x jumlah pemakaian (pada tahun 2012)

= 10.551 unit x 150 lt/bed/hari : 1000

 $= 1.583 \text{ m}^3/\text{hari} = 18,32 \text{ lt/detik}$

4.3.2.5 Jumlah Kebutuhan Air Bersih Untuk Pasar

Jumlah kebutuhan air (pasar) = areal pasar yang dilayani x jumlah pemakaian (pada tahun 2012)

= 30 ha x 12.000 lt/ha/hari : 1000

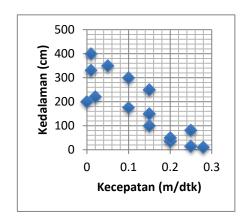
 $= 360 \text{ m}^3/\text{hari} = 4,17 \text{ lt/detik}$

4.3.2.6 Jumlah Kebutuhan Air Bersih Untuk Sarana Umum

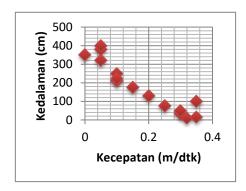
Jumlah kebutuhan air (sarana umum) = areal pasar yang dilayani x jumlah pemakaian (pada tahun 2012) = 1.062 ha x 12.000 lt/ha/hari : 1000

 $= 12.744 \text{ m}^3/\text{hari} = 147,50 \text{ lt/detik}$

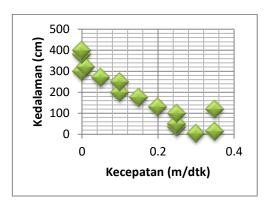
4.3.2.7 Jumlah Kebutuhan Air Bersih Untuk Perkantoran

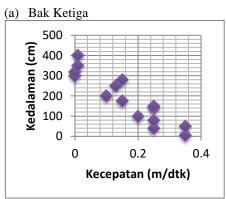

Jumlah kebutuhan air (pegawai) = jumlah pegawai dilayani x jumlah pemakaian (pada tahun 2012)

= 9.877 x 10 lt/org/hari : 1000

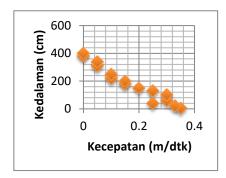

 $= 98,77 \text{ m}^3/\text{hari} = 1,14 \text{ lt/detik}$

4.4 EVALUASI UNIT PENGOLAHAN 4.4.1 Unit Koagulasi


Profil aliran kecepatan distribusi dalam bak koagulasi dapat dilihat pada grafik dibawah ini.



(a)Bak Kesatu



(a)Bak Kedua



(a) Bak Keempat

(a) Bak KeenamGambar 4.3 Profil Aliran Kecepatan BakKoagulasi

$$G = \sqrt{\frac{4 \text{ m } x \text{ 9,81 m/detik}}{8,394 \text{ x } 10^{-7} \text{ m/detik}}^2} = 355, 31 \text{ detik}^{-1}$$

a. NRe $N = v \cdot R / v$

 $N \text{ Re} = 0.486 \times 0.356 / 8.394 \times 10^{-7} \text{ m/detik}^{-2}$

Dari perhitungan diatas, diperoleh Q, td, G dan NRe untuk masing-masing bak seperti tabel dibawah ini :

Tabel 4.9 Hasil Perhitungan Bak Koagulasi

Bak	Td (detik)	G	NRe
	22.01	(detik -1)	20 21 222
1	37.01	355.31	20,616.55
2	30.64	390.46	24,897.54
3	35.75	361.49	21,339.94
4	31.49	385.20	24,230.66
5	34.88	365.96	21,871.18
6	27.54	411.90	27,706.31

Sumber: Hasil Perhitungan

4.4.2 Unit Flokulasi

Perhitungan

1. Daya atau power $P = N_P . \mu . n^2 . d^3$

$$P = 6.2 \times 0.798 \times 10^{3} \times (1500/60) \times 6^{3}$$
$$= 667.926 \text{ N-m/dt}$$

2. Bilangan Reynolds

$$N_{\rm Re} = d^2.n.\rho/\mu$$

 $\begin{array}{l} N_{Re} \, = 6^2 \, x \, (1500/60) \, x \, 996 \, / \, (0{,}798 \, x \, \\ 10^3) \end{array}$

$$= 1,123 \times 10^9$$

3. Gradien kecepatan

$$G = \sqrt{\frac{P}{\mu \bullet V}} = \sqrt{\frac{667,926}{0,798 \times 10^3 \bullet 466}}$$
$$= 42,38$$

4. Waktu tinggal per bak (bak kesatu)

$$t_d = \frac{V}{Q_1} = \frac{466}{0,486} = 958,05 \text{ detik} =$$

15,97 menit

Parameter		Has	il Perhitu	ngan Bal	k ke-		Kriteria Desain		K
Parameter	1	2	3	4	5	6	Nilai	Sumber	et
Gradien							10-100		П
Kecepatan (G)	42.38	42.38	42.38	42.38	42.38	42.38	1/dtk	Darmasati	v
Kondisi Aliran	1,123 x10°	1,123 x10°	1,123 x10°	1,123 x10°	1,123 x10°	1,123 x10°	> 10000	awan	Į,
Waktu detensi	ALC.	ALV	ALV.	ALV	ALV.	ALV	- 10000	(2001)	Ė
(td) (menit)	15.97	13.22	15.43	13.59	15.05	11.88	8-12		×
		-		•					
Gradien							10-100		П
Kecepatan (G)	42.38	42.38	42.38	42.38	42.38	42.38	1/dtk	SNI 6774	v
Waktu detensi								2008	г
(td) (menit)	15.97	13.22	15.43	13.59	15.05	11.88	20 - 100		×
Gradien								Qasim,et	Г
Kecepatan (G)	42.38	42.38	42.38	42.38	42.38	42.38	30 (1/dt)	al	>
Waktu detensi	l							(2000)	
(td) (menit)	15.97	13.22	15.43	13.59	15.05	11.88	20 - 30	(=111)	×
Gradien								Delphos,e	
Kecepatan (G)	42.38	42.38	42.38	42.38	42.38	42.38	50 (1/dt)	t al.	7
Waktu detensi								(AWWA,	
(td) (menit)	15.97	13.22	15.43	13.59	15.05	11.88	30	2004)	١,

Keterangan:

x = tidak sesuai dengan kriteria desain

v = sesuai dengan kriteria desain

4.4.3 Unit Sedimentasi

Tabel 4.13 Hasil Evaluasi Bak Sedimentasi Terhadap Kriteria Desain Berbagai Sumber

Parameter	Satuan	Hasil	Kriteria Desain	Ket
		Perhitungan	SNI 6774 2008	
Beban permukaan	m³/m²/jam	45	0.5 - 1.5	x
Kedalaman	m	3	0.5 - 1	x
Waktu tinggal	jam	0.06	2-2.5	x
Beban Pelimpah	m³/m/jam	64.28	7.2-10	x
Bilangan Reynolds		319.27	< 2000	v
Bilangan Froude		1x10°	> 10°	v
Kemiringan dasarbak (tanpa scraper)		60°	45° - 60°	v
Kemiringan tube/plate		60°	30°-60°	v

Kemiringan tube/plate Sumber : Hasil Perhitungan

Parameter	Satuan	Hasil Perhitungan	Kriteria Desain	Ket
		_	Reynolds	
Rasio panjang lebar		2.5	3:1 - 5:1	x
Surface loading rate	m³/m²/hari	1247.11	60-150	x
Kecepatan pada settler	m/min	0.87	0.05 - 0.13	x
Weir loading rate	m³/m/hari	1542.85	90-360	х
Weir loading rate (saat pengurasan)	m³/m/hari	561.6	90-360	x
Bilangan Reynolds		319.27	< 2000	v
Bilangan Froude		1x10°	> 10°	v
Waktu detensi bak	menit	4	< 120 menit	v

Sumher : Hasil Perhitungan

Keterangan:

x = tidak sesuai dengan desain

v = sesuai dengan desain

4.4.4 **Filtrasi**

Data eksisting

Tabel 4.14 Hasil Evaluasi Filtrasi Terhadap Kriteria Desain Berbagai Sumber

			Kriteria Desain	
Parameter	Satuan	Hasil Perhitungan	Kriteria Desain	Keterangan
		_	Reynolds (1982)	
Jumlah Bak	buah	17	min 2	v
Kecepatan Aliran Pipa Inlet	m/dtk	0,49	0,6 - 1,8	x
Kecepatan Aliran Pipa Outlet	m/dtk	0,49	0,6 - 1,8	x
Lebar bak	m	4	3-6	v
Perbandingan panjang & lebarbak		2:1 - 4:1	2,5	v
Kedalaman bak	m	5	5,5 - 7,5	x
Kedalaman media filter	cm	70 cm	90	x
Kedalaman media penyangga	cm	30	10	x
Luas permukaan filter	m ²	41,4	25-80	v
Kecepatan filtrasi (normal)	m³/hari-m²	86,82	100-475	x
Kecepatan saatbackwash	m³/hari-m²	10,37	100-475	x

Parameter	Satuan	Hasil Perhitungan	Kriteria Desain	Keterangan	
ratameter	Satuan	Hash Fermungan	SNI 6774 2008		
Jumlah Bak	buah	17	N = 12 Q ^{0,3}	v	
Sistem Pencucian		Dengan blower	tanpa/dengan blower & atau surface wash	v	
Kedalaman media filter	em	70	30-70	v	
Kedalaman media penyangga	cm	30	40-50	x	
Kecepatan filtrasi (normal)	m/jam	86,82	36-50	x	
Periode antara dua pencucian	jam	24-48	18-24	v	

Sumber : Hasil Perhitungar

Keterangan: x = tidak sesuai dengan desain v = sesuai dengan desain

4.4.5 Desinfektan

Desinfektan yang digunakan adalah gas chlor,dan masih berfungsi dengan baik. Sistem chlorinatornya sangat sederhana dengan mengandalkan penguapan yang terjadi di gas chlor. Pada IPA Pejompongan, clorinator yang digunakan menggunakan pompa booster yang kemudian disuntikkan pada bak reservoar.

4.4.6 Reservoir

4.5 **ANALISIS** KETERSEDIAAN **AIR** PRODUKSI TERHADAP KEBUTUHAN **AIR**

4.5.1 Proyeksi Ketersediaan Air

Dalam memproyeksikan kemampuan debit pengolahan atau kapasitas air produksi yang mampu diproduksikan oleh IPA Pejompongan untuk masa yang akan datang maka diperlukan rekapitulasi data yang debit yang dihasilkan pada tahun 2007 – 2011.

> Dari data rekapitulasi diatas, maka dapat diproyeksikan jumlah debit IPA Pejompongan hingga tahun 2032 menggunakan perhitungan dengan rumus regresi linear seperti pada tabel dibawah ini:

Tabel 4.16 Rekapitulasi Debit Kapasitas Air Produksi Tahun 2007-2011

Bulan		IPA PEJO	MPONGA	N 1 (lt/dtk)
Bulan	2007	2008	2009	2010	2011
Jan	2500	2500	2100	2100	2100
Feb	1900	1900	1800	1700	1800
Mar	1900	1800	1700	1700	1800
Apr	1800	1800	1700	1700	1700
Mei	1800	1800	1700	1700	1700
Jun	1800	1800	1700	1700	1700
Jul	1800	1800	1700	1700	1700
Agust	1900	1900	1800	1700	1800
Sep	1900	2000	1900	1700	1800
Okt	2500	2500	2400	2100	2400
Nop	2500	2500	2400	2100	2400
Des	1800	1800	1700	1700	1700
Rata-rata	1900	1800	1700	1700	1800

Tabal 4 16 Rakanitulasi Dabit Kanasitas Air Produksi Tahun 2007-2011

14001 1.10	IPA PEJOMPONGAN 1 (lt/dtk)							
Bulan	2007	2008	2009	2010	2011			
Jan	2500	2500	2100	2100	2100			
Feb	1900	1900	1800	1700	1800			
Mar	1900	1800	1700	1700	1800			
Apr	1800	1800	1700	1700	1700			
Mei	1800	1800	1700	1700	1700			
Jun	1800	1800	1700	1700	1700			
Jul	1800	1800	1700	1700	1700			
Agust	1900	1900	1800	1700	1800			
Sep	1900	2000	1900	1700	1800			
Okt	2500	2500	2400	2100	2400			
Nop	2500	2500	2400	2100	2400			
Des	1800	1800	1700	1700	1700			
Rata-rata	1900	1800	1700	1700	1800			

Tabel 4.17 Perhitungan Ketersediaan Debit IPA Pejompongan

No.	Tahun	Debit (lt/dtk) (Y)	Jumlah Data (X)	Y²	X²	XY
1	2007	1.900	1	3610000	1	1900
2	2008	1.800	2	3240000	4	3600
3	2009	1.700	3	2890000	9	5100
4	2010	1.700	4	2890000	16	6800
5	2011	1.800	5	3240000	25	9000
	Σ	8.900	15	15.870.000	55	26.400

Sumber: Hasil Perhitungan

$$b = \frac{\left[(n \times \sum XY) - (\sum X \times \sum Y) \right]}{\left[(n \times \sum X^2) - (\sum X)^2 \right]}$$

$$b = \frac{\left[(5 \times 26.400) - (15 \times 8.900) \right]}{\left[(5 \times 55) - (15)^2 \right]} = -30$$

$$a = \frac{\sum Y - b \sum X}{n} = \frac{8.900 - (-30.15)}{5} = 1.870$$

 $Y = a + b* X \longrightarrow dimana x adalah tahun$ proyeksi

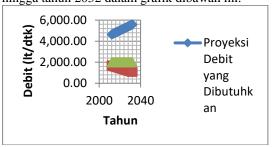
Y = 1.870 + (-30 * 6) = 1.690 Prediksi debit IPA PJ untuk tahun 2012 sebesar 1.690 lt/dtk. Hasil perhitungan hingga tahun 2032 dapat dilihat pada tabel dibawah ini.

Tahun	×	Prediksi debit (lt/dtk)	Tahun	x	Prediksi debit (lt/dtk)
2012	6	1690	2023	17	1360
2013	7	1660	2024	18	1330
2014	8	1630	2025	19	1300
2015	9	1600	2026	20	1270
2016	10	1570	2027	21	1240
2017	11	1540	2028	22	1210
2018	12	1510	2029	23	1180
2019	13	1480	2030	24	1150
2020	14	1450	2031	25	1120
2021	1.5	1420	2032	26	1090
2022	16	1390			

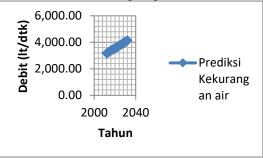
Sumber: Hasil perhitungan

Gambar 4.4 Prediksi Ketersediaan Debit IPA PJ

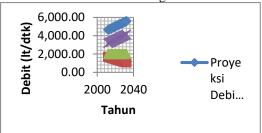
Tabel 4.19 Hasil Perhitungan Proyeksi Debit Yang Dibutuhkan Terhadap Ketersediaan Air IPA Pejompongan Dan Terhadap Prediksi Kekurangan Debit


No.	Tahun	Prediksi debit yang dibutuhkan	Prediksi kapasitasi debit pompa	Kehilangan air = 0,35%	Prediksi kapasitas debit pompa	Rata-rata debit pompa	Prediksi kekurangan debit
		lt/dtk	hidsk	hidtk	hidk	hidtk	hidt
(1)	(2)	(3)	(4)	(5)=(4) x 0,35%	(6) = (4) - (5)	(7) = (∑6 : 21)	(8) = (3) - (7)
1	2012	4.636,50	1.690,00	5,92	1.684,09	1454,39	3.182,11
2	2013	4.683,87	1.660,00	5,81	1.654,19	1454,39	3.229,48
3	2014	4,731,24	1.630,00	5,71	1.624,30	1454,39	3.276,85
4	2015	4.778,61	1.600,00	5,60	1.594,40	1454,39	3.324,22
5	2016	4.825,98	1.570,00	5,50	1.564,51	1454,39	3.371,59
6	2017	4.873,35	1.540,00	5,39	1.534,61	1454,39	3.418,96
1	2018	4.920,72	1.510,00	5,29	1.504,72	1454,39	3.466,33
8	2019	4.968,09	1.480,00	5,18	1.474,82	1454,39	3.513,70
9	2020	5.015,46	1.450,00	5,08	1.444,93	1454,39	3.561,07
10	2021	5.062,83	1.420,00	4,97	1.415,03	1454,39	3.608,44
11	2022	5.110,20	1.390,00	4,87	1.385,14	1454,39	3.655,81
12	2023	5.157,57	1.360,00	4,76	1.355,24	1454,39	3.703,18
13	2024	5.204,94	1.330,00	4,66	1.325,35	1454,39	3.750,55
14	2025	5.252,31	1.300,00	4,55	1.295,45	1454,39	3.797,92
15	2026	5.299,68	1.270,00	4,45	1.265,56	1454,39	3.845,29
16	2027	5.347,05	1.240,00	4,34	1.235,66	1454,39	3.892,66
17	2028	5.394,42	1.210,00	4,24	1.205,77	1454,39	3.940,03
18	2029	5.441,79	1.180,00	4,13	1.175,87	1454,39	3.987,40
19	2030	5.489,16	1.150,00	4,03	1.145,98	1454,39	4.034,77
20	2031	5,536,53	1.120,00	3,92	1.116,08	1454,39	4.082,14
21	2032	5.583,90	1.090,00	3,82	1.086,19	1454,39	4.129,51
			Total		29.087.84		

Sumber: Hasil Perhitungan


Proyeksi debit yang dibutuhkan diperoleh dari tabel 4.8 dengan debit air di jam puncak dan nilai kehilangan rata-rata sebesar 0,35% diperoleh dari nilai rata-rata kehilangan air pada *annual report* tahunan.

4.5.2 Hubungan Ketersediaan Air Bersih Terhadap Kebutuhan Air


Dari perhitungan diatas, dapat dilihat hubungan ketersediaan air bersih dengan kebutuhan air bersih untuk penduduk wilayah unit UPP Pusat hingga tahun 2032 dalam grafik dibawah ini.

Gambar 4.5 Hubungan Proyeksi Debit Yang Dibutuhkan Terhadap Kapasitas Debit IPA PJ

Gambar 4.6 Prediksi Kekurangan Debit Air

Gambar 4.7 Hubungan Proyeksi Debit Yang Dibutuhkan Terhadap Kapasitas Debit IPA Dan Terhadap Prediksi Kekurangan Debit Air

4.5.3 Upaya Untuk Memenuhi Kekurangan Kebutuhan Air Bersih Wilayah UPP Pusat IPA Pejompongan

4.6 EVALUASI KUALITAS AIR

4.6.1 Kualitas Air Baku

Penelitian kualitas air dibagi dalam 3 parameter, yaitu sifat fisik, kimia dan mikrobiologi. Sampel dilakukan secara *blind* tanpa mengetahui titik lokasi sampel diambil. Berikut ini adalah kualitas air sumber air baku di beberapa titik sumber air baku.

No.	Parameter	Satuan	manii EVă	luasi Kual Titil: Sa	mpling	o.u	Kriteria	Ket
210.	Tarameter	Satuan	S1	S2	S3	S4	Mutu	Ket
I	FISIKA							
1.	Suhu	°C	27,6	27,8	27,3	27,6	Suhu air normal	v
2.	Bau	-	-	-	Busuk	-	-	x
3.	Rasa	-	Agak asam	-	Agak pahit	-	-	x
4.	Zat Padat Terlarut	mg/l	183,33	116,67	270	586,67	1000	v
5.	Zat Padat Tersuspensi	mg/l		1,8	6	2,67	50	v
П	KIMIA							
1. 2. 3.	pH DO		4,74	5,11	6,24	5,13	6-9	v
2.		mg/l	1,96	2,35	0,98	2,00	≥6	v
3.	BOD	mg/l	317	83,2	214	29,7	2	X
4. 5.	COD	mg/l	952	208,25	646	119	10	X
5.	Amonia	mg/l	1,13	4,08	6,88	4,15	0,5	x
6.	Nitrit	mg/l	0,001	0,009	0,014	0,375	0,06	X
7.	Nitrat	mg/l	0,21	0,001	0,001	0,0042	10	v
8.	Fosfat	mg/l	0,0005	0,0005	0,503	0,0005	0,2	v
9.	Besi (Fe)	mg/l	Ttd	Ttd	Ttd	Ttd	0,3	-
10.	Timbal (Pb)	mg/l	Ttd	Ttd	Ttd	Ttd	0,03	-
11.	Tembaga (Cu)	mg/l	0,014	0,012	0,018	Ttd	0,02	v
12.	Krom (Cr)	mg/l	Ttd	Ttd	Ttd	Ttd	0,05	-
13.	Kadnium (Cd)	mg/l	Ttd	Ttd	Ttd	Ttd	0,01	-
14. III	Seng (Zn) MIKROBIOLOGI	mg/l	Ttd	0,002	0,129	Tdd	0,05	v
1.	Fecal Coli (E.Coli)	MPN/100 ml	-	1500	3500	120	100	X
2.	Coliform	MPN/100	_	7000	10000	300	1000	x

Kerangan:

v = masih dibawah batas kadar maksimum yang diperbolehkan

x = diatas batas kadar maksimum yang diperbolehkan

4.6.2 Kualitas Air Produksi

Tabel 4.21 Hasil Evaluasi Kualitas Air Produksi

No	Jenis Parameter	Satuan	Kadar	Kadar maks yang diperbolehkan	Ket
I	Fesk			•	
1.	Bau			Tidak berbau	v
2.	Warna	TCU		15	v
	Total Zat padat terlarut (TDS)	mg1	145	500	v
4.	Kekeruhan	NTU	1	5	v
5. 6.	Rasa	-	Tidak berasa	Tidak berasa	v
II.	Subs Kimia	*c		Subu udara ±3	v
1.	Aluminium	mg/l		0,2	
1. 2. 3. 4. 5. 6. 7. 8. 9.	Besi	mg/l	0,795	0,3	x
3.	Kesadahan	mg/l		500	x
4.	Khlorida	mg/l	12	250	v
5.	Mangan	mg/l	0,0399	0,4	v
6.	pH		7,6	6,5-8,5	v
7.	Seng	mg/l		3	-
8.	Sulfat	mg/1	41	250	v
9.	Tembaga	mg/l	0,0304	2	v
10.	Amonia	mg/l	0,10	1,5 3	v
11.	Natrat	mg/l	0,015	3	v
12.	Nitrat	mg/l	3,7	50	v
13.	Fluorida	mg/l	0,14	1,5	v
14.	Total kromium	mg/l	0,0026	0,05	v
III.	Mikrobiologi	_			
1.	E.Coli	jumlah per 100 ml sampel	0	0	v
2.	Total Bakteri	jumlah per 100	0	0	
_	Koliform	mi sampei	1	· 1	
IV.	Bahan Organik	mg/l	6	10	v
1.	Deterjen	mg/l	0,02	0,05	v

Kerangan:

v = masih dibawah batas kadar maksimum yang diperbolehkan

x = diatas batas kadar maksimum yang diperbolehkan

Pada tabel diatas dapat dilihat bahwa parameter-parameter yang terkandung dalam air hasil produksi (pengolahan) berada dibawah kadar maksimum yang diperbolehkan PerMenKes No.492 Tahun 2010. Air produksi ini kemudian bisa didistribusikan ke pelanggan air bersih.

4.7 ANALISIS PENGARUH BIAYA PRODUKSI DAN PENJUALAN AIR BERSIH TERHADAP LABA KOTOR

4.7.1 Laporan Laba Rugi

Laporan laba rugi IPA PJ merupakan laporan laba rugi komparatif ddisajikan dengan beberapa tahap.

Berikut adalah laporan laba rugi IPA Pejompongan untuk Tahun 2010 dan 2011 yang disajikan dalam bentuk laporan laba rugi komparatif. Tabel 4.22 Laporan Laba rugi Periode 2010-2011

				31 Describer
No.	Union.	Catatan	31 Danamkar 2010	2011
1	Rondapatan Usaha			
	- Benjualan, Air		163,436,922,615	170,471,504,910
	- Betribusi, Air Limbah		5,096,253,153	6,418,662,115
	- Rendanatan Non Air		14,032,614,899	16,859,364,825
	Jumbb, Pondepass Urchs		182,565,790,627	193,749,531,850
2	Binya Languag Ustha			
	- Binya Sumbor Air		33,356,056,665	37,387,921,420
	- Binya Rengolulup Air		48,278,032,470	50,641,479,835
	- Bisyo, Jonamisi Distribut		14,232,687,480	14,626,312,817
	- Biaya, Air Limbah		8,690,230,500	8,525,893,600
	Jumbh Bisso Languag Umha		104,557,007,115	111,181,607,672
3	Laka (Bugi) Kater Uraha (1-2)		78,008,783,512	82,567,924,178
4	Binya Umum & Adm		35,630,810,100	37,148,365,025
- 5	Laka (Bugi) Umha (3-4)		42,377,973,412	45,419,559,153
6	Rendapatan Lain-lain			
	- Rendagatan Lain-lain		1,045,036,950	1,306,536,508
	- Biaga Lain-lain		182,364,590	192,351,020
	Rendagatan Lain-lain (Bernik)		862,672,360	1,114,185,488
	·			
7	Laka Sekelum Keustungan, Luar			
Ι΄	Biss		10,256,303,120	13,526,905,400
8	Lata (Rugi) Scholum Pajak		10,256,303,120	13,526,905,400
9	Rejok Renghailan		1,025,630,312	1,352,690,540
10	Laba (Rugi) Scolab Paiak		9,230,672,808	12,174,214,860

Sumber: IPA Pejompongan, 2011

Tabel 4.23 Jumlah Biaya Produksi Air Bersih Periode 2010/2011

			Biaya Brodulo	si Air Bersib	
Tahun	Bolas	Biaga Sumbs	g Air (Rp)	Biaya Peogo	Įарад Air
		Tahunan	Bulacac	Tahunan	Bulanan
2010	Jan		2,530,652,490		3,230,500,215
	Feb		1,635,162,650		3,412,302,500
	Mar		2,951,616,260		3,713,050,300
	Apr		3,375,254,960		3,620,530,150
	May		1,492,641,305		4,263,050,310
	Jun	33,356,056,665	3,531,282,650	48,278,032,470	4,063,251,015
	Jul	30,000,000,000	3,742,360,050	T0,270,032,T70	4,303,183,500
	Aug		4,963,020,150		5,326,203,500
	Sep		1,896,305,030		4,362,103,480
	Oct		2,420,980,630		3,360,310,050
	Nov		3,286,530,450		3,693,041,130
	Dec		1,530,250,040		4,930,506,320
2011	Jan		2,818,931,510		3,301,503,200
	Feb		1,096,230,440		4,030,503,610
	Mac		3,890,304,020		4,203,150,150
	Apr		1,930,152,020		5,010,360,620
	May		2,205,010,023		3,030,503,025
	Jun	37,387,921,420	1,822,350,220	50,641,479,835	4,013,360,300
	Jul	21,201,721,720	3,190,310,035	SALETITIONS	3,503,205,020
	Aug		5,837,826,030		3,032,033,510
	Sep		2,903,120,050		4,203,052,030
	Oct		3,256,203,602		5,203,002,300
	Nov		3,831,282,120		5,760,501,030
	Dec		4,606,201,350		5,350,305,040

Sumber: IPA Pejompongan, 2011

Tabel 4.24 Jumlah Penjualan Air Bersih IPA Periode 2010 /2011

Tahun	Bulan	Tahunan	Bulanan
2010	Jan		9,526,206,125
	Feb		13,516,503,010
	Mar		15,030,270,200
	Apr		9,503,055,020
	May		15,630,150,200
	Jun	163,436,922,615	12,480,309,705
	Jul	103,430,922,013	10,038,030,200
	Aug		13,030,698,030
	Sep		15,205,840,020
	Oct		16,050,351,855
	Nov		15,005,278,020
	Dec		18,420,230,230
2011	Jan		16,030,650,300
	Feb		14,030,552,000
	Mar		10,151,630,120
	Apr		13,035,403,025
	May		15,603,014,505
	Jun	170 471 504 010	16,030,546,055
	Jul	170,471,504,910	16,450,786,605
	Aug		15,140,150,650
	Sep		9,364,258,300
	Oct		15,480,506,450
	Nov		13,650,450,850
	Dec		15,503,556,050

Tabel 4.25 Jumlah Laba Kotor IPA Pejompongan Periode 2010 – 2011

Tahun	Bulan	Tahunan.	Bulanan
2010	Jan		9,526,206,125
	Feb]	13,516,503,010
	Mar]	15,030,270,200
	Apr		9,503,055,020
	May		15,630,150,200
	Jun	163,436,922,615	12,480,309,705
	Jul	103,430,522,013	10,038,030,200
	Aug]	13,030,698,030
	Sep]	15,205,840,020
	Oct		16,050,351,855
	Nov]	15,005,278,020
	Dec		18,420,230,230
2011	Jan]	16,030,650,300
	Feb]	14,030,552,000
	Mar]	10,151,630,120
	Apr]	13,035,403,025
	May]	15,603,014,505
	Jun	170.471.504.910	16,030,546,055
	Jul	110,111,501,510	16,450,786,605
	Aug]	15,140,150,650
	Sep]	9,364,258,300
	Oct]	15,480,506,450
	Nov]	13,650,450,850
	Dec		15,503,556,050

Sumber: IPA Pejompongan, 2011

4.7.2 Hasil Estimasi Model

Estimasi model diperoleh dari analisis regresi linier berganda. Analisis regresi merupakan suatu metode yang digunakan untuk menganalisa hubungan regresi merupakan suatu metode yang digunakan untuk menganalisa hubungan antar variabel.

Tabel 4.26 Print Out Coefficient Program SPSS (*Statistical Product and Service Solution*) Versi 16.0 Coefficients^a

	Unstandardized Coefficients Standardized Coefficients				
Model	В	Std. Error	Beta	t	Sig.
l (Constant)	-3.947E9	4.563E9		046	.927
BSAB	-1.203	.170	824	-7.076	.000
BPAB	-1.639	.247	472	-6.636	.001
PAB	1.109	.378	.258	2.933	.008

a. Dependent Variabel: Laba Kotor (LK)

Nilai konstanta dan koefisien regresi untuk masing-masing variabel bebas ditunjukkan oleh angka pada kolom unstandardized coefficient bagian B.

4.7.3 Analisis Koefisien Determinasi

Tabel 4.27 Print Out Model Summary Model Summary^b

NIOG.				
Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	.953	.912	.905	9.230E8

a. Predictors: Constant, PAB, BPAB, BSAB

b. Dependent Variabel: LK

4.7.4 Pengujian Hipotesis Parsial (Uji t Statistik)

a. Variabel Biaya Sumber Air Bersih

Prosedur pengujian:

1. Formulasi Hipotesis

 H_0 : $\beta_{x1} = 0$, artinya tidak ada pengaruh biaya sumber air bersih terhadap laba

kotor

 H_0 : $\beta_{x1} \neq 0$, artinya ada pengaruh biaya sumber air bersih terhadap laba kotor.

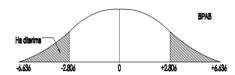
5. Kesimpulan

Gambar 4.8 Hasil Pengujian Hipotesis Partial Pada Biaya Sumber Air Bersih

Dikarenakan t hitung lebih kecil daripada t table (-7,0765 < - 2,086), maka keputusan yang diambil adalah menolak H_0 yang berarti menerima H_a hal ini berarti variabel biaya sumber air bersih berpengaruh terhadap laba kotor.

b. Variabel Biaya Pengolahan Air Bersih

Prosedur pengujian:


1. Formulasi Hipotesis

 H_0 : $\beta_{x2}=0$, artinya tidak ada pengaruh biaya sumber air bersih terhadap laba

kotor.

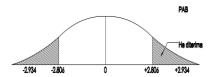
 H_0 : $\beta_{x2} \neq 0$, artinya ada pengaruh biaya sumber air bersih terhadap laba kotor.

5. Kesimpulan

Gambar 4.9 Hasil Pengujian Hipotesis Partial Pada Biaya Pengolahan Air Bersih

c. Variabel Penjualan Air Bersih

Prosedur pengujian:


1. Formulasi Hipotesis

 H_0 : $\beta_{x3}=0$, artinya tidak ada pengaruh biaya sumber air bersih terhadap laba

kotor.

 H_0 : $\beta_{x3} \neq 0$, artinya ada pengaruh biaya sumber air bersih terhadap laba kotor.

5. Kesimpulan

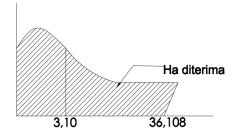
Gambar 4.10 Hasil Pengujian Hipotesis Partial Pada Penjualan Air Bersih

Dikarenakan t hitung lebih kecil daripada t table (2,934 > +2,086), maka keputusan yang diambil adalah menolak H_0 yang berarti menerima H_a hal ini berarti variabel penjualan air berpengaruh terhadap laba kotor.

4.7.5 Pengujian Hipotesis Serentak (Uji F Statistik)

Prosedur pengujian:

1. Formulasi Hipotesis


 $H_0: \beta_{x1}: \beta_{x2}: \beta_{x3} = 0, \ artinya \ biaya \ sumber$ air bersih, biaya pengolahan air bersih dan penjualan air bersih, secara bersama-sama tidak berpengaruh terhadap laba

kotor.

 $H_0: \beta_{x1}: \beta_{x2}: \beta_{x3} \neq 0, \text{ artinya biaya sumber}$ air bersih, biaya pengolahan air bersih dan penjualan air bersih, secara bersama-sama berpengaruh terhadap laba

kotor.

5. Kesimpulan

Gambar 4.11 Hasil Pengujian Hipotesis Serentak

Tabel 4.28 Print Out ANOVA

ANOVA

Mod	del	Sum of Squares	df	Mean Square	F	Sig.
l	Regression	9.250E18	3	3.083E19	63.619	.000°
	Residual	1.704E19	20	8.519E17		
	Total	2.629E19	23			

a. Predictors: (Constant), PAB, BPAB, BSAB

BAB 5

KESIMPULAN DAN SARAN

5.1 KESIMPULAN

Berdasarkan hasil penelitian yang telah dibahas sebelumnya, dapat ditarik kesimpulan sebagai berikut:

- 1. Kebutuhan air bersih untuk penduduk di wilayah UPP Pusat hingga tahun 2032 adalah 2.791,95 lt/dtk pada jam normal, 3.489,94 lt/dtk pada hari maks dan 5.583,90 lt/dtk pada jam puncak.
- 2. Hasil evaluasi kondisi eksisting unitunit instalasi sebagai berikut :
 - a. Gradien kecepatan, kondisi aliran dan waktu detensi unit koagulasi telah sesuai dengan kriteria desain 3 dari 4 sumber (Darmasetiwan (2001), SNI 6774 2008 dan Qasim (AWWA 2004))
 - b. Gradien kecepatan dan kondisi aliran unit flokulasi telah sesuai dengan kriteria desain 3 dari 4 sumber, namun waktu detensi hasil perhitungan belum sesuai dengan kriteria desain 3 sumber tersebut.
 - c. Unit sedimentasi yang berada di clarifier belum sesuai dengan kriteria desain baik itu untuk dimensi, kecepatan pada settler, surface loading rate maupun weir loading rate.
 - d. Luas permukaan dan jumlah unit filtrasi telah memenuhi kriteria desain namun kecepatan aliran pipa inlet/outlet dan kecepatan aliran pada saat normal/backwash belum memenuhi kriteria desain menurut Reynolds (1982) dan SNI 6774 2008.
 - e. Pada proses desinfektan telah sesuai dengan kriteria desain yang berlaku.
 - f. Bak reservoir telah sesuai dengan kriteria desain baikitu jumlah unit, kedalaman bak

hingga tinggi jagaan. Namun waktu tinggal yang terlalu lama yang dapat berpengaruh terhadap kualitas air produksi.

- 3. Dari hasil analisis, ketersediaan air produksi IPA PJ I saat ini belum cukup untuk memenuhi kebutuhan air penduduk di wilayah UPP Pusat hingga tahun 2032. Adanya defisit debit air dapat dipenuhi dengan berbagai upaya antara lain dengan bantuan tambahan suplai air dari IPA PJ II yang memiliki kapasitas air produksi lebih besar.
- 4. Banyak parameter kualitas air baku yang didapatkan dari berbagai lokasi sumber air baku yang tidak sesuai dengan Peraturan Pemerintah No.82 Tahun 2001.
- 5. Secara garis besar, kualitas air produksi saat ini telah sesuai dengan Peraturan Menteri Kesehatan No.492/Menkes/Per/IV/2010 dan tergolong layak didistribusikan dan dikonsumsikan oleh penduduk.
- 6. Dari hasil analisis regresi yang dilakukan:
 - a. Biaya sumber air bersih berpengaruh negatif terhadap laba kotor. Jika biaya sumber air bersih mengalami kenaikan maka laba kotor akan mengalami penurunan, dan sebaliknya.
 - Biaya pengolahan air bersih juga berpengaruh negatif terhadap laba kotor. Jika biaya pengolahan air bersih mengalami kenaikan maka laba kotor akan mengalami penurunan, dan sebaliknya.
 - c. Hasil penjualan air bersih berpengaruh positif terhadap laba kotor. Jika penjualan air bersih mengalami peningkatan,maka pihak IPA PJ akan mendapatkan peningkatan pada laba kotor.

DAFTAR PUSTAKA

5.2 SARAN

Dari hasil penelitian diatas, penulis menyarankan :

- Untuk memenuhi kebutuhan air bersih untuk penduduk wilayah UPP Pusat perlu adanya perbaikan dan optimalisasi unit-unit instalasi pengolahan yang ada di IPA PJ yang disarankan dari hasil evaluasi, hal ini dapat menaikkan biaya pengolahan air.
- Untuk mendapatkan kualitas air baku yang baik sesuai dengan standar peraturan, perlu adanya observasi lanjutan terhadap sumber air baku, hal ini dapat menaikkan biaya sumber air bersih.
- 3. Untuk meningkatkan keuntungan (laba kotor) atau menutupi 'pembengkakan' biaya sumber air dan pengolahan air, pihak pengelola dapat memperolehnya dengan memberikan kepuasan pada penduduk/pelanggan dengan kualitas air produksi yang layak konsumsi dan sesuai dengan standar peraturan.
- Perlu dibuat sistem dan prosedur yang baku didalam pengoperasian IPA Pejompongan untuk menjaga konsistensi kuantitas, kualitas dan kontinuitas produksi
- Perlu adanya peningkatan keahlian dan pengetahuan pada human resources untuk mengoptimalkan kinerja dalam proses instalasi.
- Untuk penelitian selanjutnya, perlu variabel bebas yang digunakan dapat lebih dari 3variabel yang mempengaruhi laba kotor dengan jumlah data penelitian yang lebih banyak sehingga hasil yang diperoleh lebih baik.
- Penulis menyarankan agar tidak menjadikan analisa penelitian ini sebagai satu-satunya alat analisis dalam usaha untuk meningkatkan laba kotor perusahaan, sebaiknya dilakukan pula analisis dengan model analisis lainnya.

- Amalia, Rizka, dkk. Evaluasi dan Desain Unit Pengolahan Air Minum Dalam Rangka Peningkatan Kapasitas Instalasi di PT.Krakatau Tirta Industri, Cilegon Banten. Institut Pertanian Bogor. Bogor
- AWWA. 1998. Water Treatment Plant And Design. New York: Mc Graw Hill Companies, Inc
- Darmasetiawan, Martin. 2001. *Teori dan Perencanan Instalasi Pengolahan Air*. Bandung: Yayasan Suryono.
- Darmasetiawan. 2004. *Teori Dan Perencanaan Instalasi Pengolahan Air*. Jakarta: Ekamitra Engineering.
- Degreemont. 1970. *Water Treatment Handbook*, 5th ed. New York: John Willey & sons.
- Delphos, JP, Werner, GM. 2004. Mixing,
 Coagulation and Flocculation. Didalam:
 American Water Works
 Association/American Society of Civil
 Engineers. Water Treatment Plant Design
 fourth edition. Amerika Serikat: McGrawHill.
- Fajri Arifiani, Nur, dkk. 2007. Evaluasi Desain Instalasi Pengolahan Air PDAM Ibu Kota Kecamatan Prambanan Kabupaten Klaten. Universitas Diponegoro. Semarang
- Hartono, Joko, dkk. 2010. Evaluasi dan Optimalisasi Kinerja Instalasi Pengolahan Air Minum Citayam, PDAM Tirta Kahuripan Terhadap Pertumbuhan Penduduk Kota Depok. Universitas Indonesia. Depok
- Ikatan Akuntansi Indonesia. 2004. *Standar Akutansi Keuangan*. Salemba Empat. Jakarta
- Kawamura, S. 1991. *Integrated Design of Water Treatment Facilities*. John Wiley and Sons
 Inc. Canada. USA
- Munawir, S, 2001. *Analisis Laporan Keuangan*. Cetakan Kedua belas. Yogyakarta

- Qasim, SR, Motley, EM,Zhu, G. 2000. Water Works

 Engineering Planning Design &

 Operation. Amerika Serikat: Prentice-Hall
- Reynolds, T.D and Richards, P.A 1996. *Unit*Operation and Process In Environmental

 Engineering, Second Edition. PWS

 Publishing Company. USA
- Reynolds. 1982. *Unit Operations and Processes in Environmental Engineering*. California
- Schultz, C.R.and Okun, D.A. 1992. Surface Water Treatment For Communities in Developing Countries. New York. USA
- Setyandito, Iki, dkk. 2006. Rencana Tindak (Action Plan) Dan AnalisaPenyediaan Air Bersih Di Propinsi Nusa Tenggara Barat. Universitas Mataram. Nusa Tenggara Barat
- Sutrisno. 2000. *Akuntansi Biaya*. Penerbit Ekonisia. Yogyakarta
- Syarifudin, Adib. Xxx. Analisis Kebutuhan dan Ketersediaan Air Bersih Unit Sumberlawang PDAM Sragen. Sragen.
- Wahyuni saputri, Afrike. 2011. Evaluasi Instalasi Pengolahan Air Minum (IPA) Babakan PDAM Tirta Kerta Raharja Kota Tanggerang. Universitas Indonesia. Depok
- Wulan dani, Surya. 2006. Analisis Pengaruh Biaya Produksi dan Penjualan Air Bersih Terhadap Laba Kotor Pada PDAM Tirtanadi. Universitas Sumatera Utara. Medan

Palyja annual report 2010 dan 2011