PERAWATAN PREVENTIF PADA MESIN PRES *PUNCHING*PNEUMATIK GUNA MEMPERTAHANKAN KUALITAS CETAK *END*COVER & SUPPORT METAL PLANK DI PT. LINE ONE INDONESIA

Muhammad Ryan¹, Hamid Abdillah²

1,2 Program Studi Pendidikan Vokasional Teknik Mesin, Fakultas Keguruan dan Ilmu Pendidikan, Universitas Sultan Ageng Tirtayasa

Jl. Ciwaru Raya, Cipare, Kec. Serang, Kota Serang, Banten 42117 E-mail: ¹muhammadryan31032002@gmail.com

Submitted Date: Desember 21, 2024 Reviewed Date: Januari 29, 2025 Revised Date: Januari 30, 2025 Accepted Date: Januari 31, 2025

Abstract

PT. Line One Indonesia is a company engaged in the production of scaffolding. This company produces two parts of scaffolding, namely Metal Plank Frame, End cover & support using a 45 Ton pneumatic punching press machine. The health and suitability of the machine require maintenance. This maintenance has the following objectives: meeting the needs according to the production plan, reducing capital costs (return on investment), and maintaining product quality. This study aims to create a preventive maintenance model on the press machine to maintain the print quality of the metal plank end cover & support at PT. Line One Indonesia. The researcher observed the effect of preventive maintenance on print quality and total results of end cover & support in the company within a month. This study uses a case study method, which is a method used to understand the operational environment of industrial machines. The data collection method uses observation and interview methods. Based on the data obtained, it is concluded that there was a reduction in the results made before the implementation of preventive maintenance. The main factor in this case is due to reduced performance on the machine. Therefore, to restore or minimize the decline in performance on the machine, structured maintenance is needed based on the needs of each part.

Keywords: Scaffoldhing, Preventif maintenance, end cover & support

Abstrak

PT. Line One Indonesia merupakan sebuah perusahaan yang bergerak dalam bidang produksi scaffolding. Perusahaan ini memproduksi dua bagian scaffolding di antaranya Metal Plank Frame, End cover & support dengan menggunakan sebuah mesin pres punching pneumatik 45 Ton. Kesehatan dan kelayakan mesin memerlukan perawatan. Perawatan ini memiliki tujuan di antaranya memenuhi kebutuhan sesuai rencana produksi, mengurangi biaya modal (return of investment), dan menjaga kualitas produk. Penelitian ini bertujuan membuat model perawatan preventif pada mesin pres untuk mempertahankan kualitas cetak end cover & support metal plank di PT. Line One Indonesia. Peneliti mengamati pengaruh perawatan preventif terhadap kualitas cetak dan total hasil end cover & support di perusahaan tersebut dalam waktu sebulan. Penelitian ini menggunakan metode studi kasus yaitu metode yang digunakan untuk memahami lingkungan operasional mesin industri. Adapun metode pengumpulan data menggunakan metode observasi dan wawancara. Berdasarkan dari data yang di dapat disimpulkan bahwasanya terjadi pengurangan pada hasil yang dibuat sebelum penerapan perawatan preventif. Faktor utama dalam hal ini dikarenakan berkurangnya performa pada mesin. Oleh karena itu, untuk mengembalikan atau meminimalisasi penurunan performa pada mesin diperlukan perawatan yang terstruktur berdasarkan dengan kebutuhan tiap bagiannya.

Kata kunci: Scaffolding, Perawatan preventif, end cover & support

I. Pendahuluan

PT. Line One Indonesia merupakan sebuah perusahaan yang bergerak dalam bidang produksi scaffolding. PT. Line One Indonesia terletak di Jl. Prof.. Dr. Ir. Soetami KM 07, Desa Nameng, Rangkasbitung, Lebak Banten 42312. Perusahaan ini bergerak dibidang konstruksi khususnya pada produksi *Metal plank* scaffolding. Scaffolding merupakan suatu

struktur sementara yang digunakan sebagai bantuan sanggahan manusia maupun material dalam konstruksi atau perbaikan gedung serta bangunan besar lainnya(Kakali, 2023). Dalam produksinya perusahaan memproduksi dua bagian scaffolding yang nantinya di satukan menjadi satu kesatuan, yaitu, Metal plank frame, dan end cover & support. Metal Plank merupakan sebuah bagian yang terdapat dalam

satu rangkaian scaffolding. *Metal plank* terbentuk dari sebuah besi lembaran yang diberikan sebuah tekukan dengan menggunakan mesin *forming* sehingga menjadikan sebuah bentuk lain dari lembaran. Pada bagian scaffolding, *end cover & support* merupakan bagian yang terdapat di struktur metal plank dengan fungsi sebagai penutup sisi samping. Mesin pres digunakan untuk mencetak logo atau tanda pengenal PT. Line One Indonesia pada bagian *end cover & support*.

Pembuatan metal plank frame, end cover & support menggunakan sebuah mesin pres punching pneumatik 45 Ton. Mesin pres merupakan sebuah alat yang dirancang untuk menghasilkan tekanan tinggi yang digunakan untuk mempermudah pekerjaan manusia (Adim, 2024). Mesin pres bekerja dengan cara memberikan tekanan pada material. Mesin ini menjadi bagian penting dalam industri manufaktur yang berfungsi sebagai pembentuk dari logam lembaran menjadi sebuah bentuk baru dengan metode penekanan. Dalam proses kerjanya mesin pres menggunakan sumber tenaga dari pneumatik maupun hidrolik untuk menghasilkan sebuah tekanan yang sesuai dengan kebutuhan(Syaukani, dkk., 2021). Mesin hidrolik menjadi komponen yang sangat penting dalam sektor industri berkat kemampuan memberikan kekuatan yang besar dengan ukuran yang relatif kompak(Syahputra, dkk., 2022).

Untuk memastikan kesehatan dan kelayakan mesin diperlukannya sebuah perawatan, perawatan adalah suatu tindakan yang digunakan untuk memastikan suatu peralatan dapat digunakan dalam proses produksi(Sanam, dkk. 2022). Perawatan ini bertujuan memenuhi kebutuhan sesuai pada rencana produksi, mengurangi biaya modal (return of investment), dan menjaga kualitas produk(Khabib dan Muhamadin, 2024). Perawatan memiliki tujuan menjamin ketersedian barang, menjamin fasilitas secara teknis maupun ekonomis, memperpanjang usia mesin, menjamin kesiapan operasional, serta meniamin keselamatan dan keamanan operator(Armanda, dkk. 2023). Dalam hal ini penerapan perawatan preventif dibutuhkan guna menjaga kualitas dari hasil cetak end cover & support metal plank dengan menggunakan mesin pres punching pneumatik 45 ton. Perawatan preventif adalah salah satu jenis perawatan yang ada di dalam dunia industri. Perawatan preventif bertujuan untuk mencegah kerusakan dengan melakukan inspeksi. pelumasan, perbaikan minor, penyesuaian dan tindakan lain yang bertujuan untuk menghindari kerusakan pada mesin yang beroperasi(Rijal, dkk, 2022). Perawatan preventif dilakukan dalam menjaga maupun merawat mesin secara terjadwal. Perawatan ini dilakukan berkala baik per hari, per minggu, per bulan, maupun per Pelaksanaan perawatan preventif bertujuan untuk mencegah kerusakan kecil hingga besar pada mesin serta menentukan langkah perbaikan yang perlu dilakukan selanjutnya (Suryadi dkk., 2023).

Oleh karena itu, dalam penelitian ini, peneliti akan membuat model perawatan preventif pada mesin pres untuk mempertahankan kualitas cetak *end cover & support metal plank* di PT. Line One Indonesia. Penelitian ini bertujuan untuk mengetahui total hasil produksi *end cover & support* setelah penerapan perawatan preventif pada mesin di perusahaan tersebut dalam waktu sebulan.

II. Metode Penelitian

Penelitian ini menggunakan metode kualitatif dengan pendekatan deskriptif untuk menggambarkan fenomena secara mendalam tentang penerapan perawatan preventif pada mesin pres. Pendekatan ini bertujuan untuk menggambarkan kondisi aktual, kendala, dan efektivitas dari penerapan perawatan preventif pada mesin pres secara sistematis. Data dikumpulkan melalui observasi, wawancara dan dokumentasi. Observasi dilakukan secara langsung ke PT. Line One Indonesia dan memperoleh data berupa total barang hasil cetak dalam waktu dua bulan, serta waktu perawatan yang telah dilakukan pada mesin tersebut. Data tersebut diperoleh melalui wawancara kepada teknisi dan operator produksi, dokumentasi dilakukan untuk mendapatkan data berupa gambar dari jenis mesin dan spesifikasinya. Selain melalui observasi dan wawancara secara kelapangan, penelitian mendapatkan data lain melalui studi literatur dari penelitian-penelitian terdahulu mengenai perawatan preventif.

III. Hasil dan Pembahasan

A. Spesifikasi Mesin

Pada dasarnya mesin pres terdiri dari tiga jenis yang diantaranya mesin pres hidrolik, mesin pres manual, dan mesin pres mekanikal(Putra, dkk, 2021). PT. Line One Indonesia menggunakan mesin pres berjenis mekanikal. Mesin press mekanikal menggunakan *Fly Wheel* sebagai penyalur penggerak, mesin ini menggunakan motor elektrik sebagai pengubah tenaga listrik menjadi tenaga mekanik. Umumnya mesin ini digunakan untuk melakukan *finishing*

press dies dengan membentuk pola sesusai dengan bentuk yang diinginkan(Syahlan dan Santoso, 2024). Mesin press mekanik yang dengan pada PT. Line One Indonesia berasal dari komatsu dengan kakuatan 45 ton seperti yang ditunjukan pada Gambar 1.

Gambar 1. Mesin pres *punching* pneumatik komatsu 45 Ton Adapun spesifikasi pada mesin tersebut tercantum pada Tabel 1.

Tabel 1. Spesifikasi mesin pres punching pneumatik komatsu 45 ton

Spesifikasi Mesin						
Laboratorium pemeriksaan	Showa 53.12					
Tipe nomor sertifikasi	K002					
Nama pembuat	Komatsu Manufacturing Co., Ltd,					
Jenis sertifikasi rencana keselamatan kerja	OBS, 45 K2					
Kementerian Ketenagakerjaan						
Nomor mesin	304103					
Tahun pembuatan	5 Mei 1997					
Kapasitas tekan	45 Ton					
Jumlah tekanan	80 spm					
Panjang batang tekan	100 mm					
Tinggi cetakan (dari atas guling ke bagian	250 mm					
bawah <i>slide</i>)						
Penyesuaian geser	60 mm					
Dimensi slide (kiri/kanan dan	400 x 300 mm					
depan/belakang)						
Dimensi penopang (kiri/kanan dan	700 x 450 x 65 mm					
depan/belakang)						
Waktu henti tiba-tiba	145 ms					
Waktu henti maksimal	166 ms					
Pengaturan posisi perangkat	15 Setiap waktu					

B. Bagian Mesin dan Barang Hasil Cetak

Pada umumnya mesin pres terdiri dari tiga bagian utama yaitu *Frame*, *Ram*,dan *Bed*(Rubowo, 2019). Pada hal ini terdapat bagian-bagian inti lainnya yang

membutuhkan perhatian tinggi dalam perawatan guna menjaga kualitas dan kesehatan mesin, data kebutuhan tersebut bisa dilihat pada Tabel 2.

Tabel 2. Bagian mesin pres punching pneumatik komatsu 45 ton

Bagian	Waktu		
Rem Kopling	1 Tahun		
Katup Selenoid	1 Tahun		
Sabuk	6 Bulan		
Motor penggerak	1 Minggu		
Relai	1 Bulan		
Penyaring udara	1 Minggu		
Tabung udara	1 Bulan		
Pompa udara	1 Minggu Pengisian		
Indikator Oli	6 Bulan		
Batang putar (crankshaft)	3 Bulan		
Regulator	6 Bulan		
Katup saluran oli	1 Tahun pergantian		
Batang tekan (Punch)	1 Tahun		
Tombol operasi	1 Hari		
Bantalan geser (slider)	1 Bulan dan 1 Hari pelumasan		
Bantalan tetap	1 Bulan		

Adapun barang atau part yang dihasilkan pada PT. Line One dengan menggunakan mesin pres punching pneumatik komatsu 45ton ini adalah *end cover & support metal plank* dengan

2 ukuran yang di antaranya: 250mm x 40mm x 1.2mm dan 400mm x 40mm x 1.2mm seperti yang ditunjukan pada Gambar 2.

Gambar 2. Barang hasil cetak

C. Hasil Wawancara

Berdasarkan hasil wawancara dengan Pak Indra selaku kepala bidang produksi mengungkapkan bahwa PT. Line One Indonesia bergerak dibidang produksi *metal plank* dengan menggunakan sistem pesanan. Oleh karena itu, penggunaan mesin relatif minim di bandingkan dengan perusahaan lain yang menggunakan sistem produksi masal. Perawatan pada mesin pres *punching* pneumatik di PT. Line One tidak terlalu signifikan yaitu hanya pengecekan tekanan udara, pembersihan sebelum dan sesudah penggunaan mesin, dan pemberian pelumas pada *RAM/slider*".

Dari hasil wawancara ini dapat kita simpulkan bahwa perawatan yang dilakukan pada mesin di PT. Line One tersebut hanya sebatas pemberian pelumas pada bagian RAM/slider, pembersihan mesin sebelum dan pada sesudah pengoperasian, dan pengecekan tekanan fluida. Hasil wawancara menunjukkan bahwa sistem perawatan mesin di PT. Line One Indonesia belum baik, hal ini menjadi berkurangnya performa mesin. Perawatan merupakan kombinasi dari tindakan yang dilakukan untuk menjaga memperbaiki barang sampai pada kondisi yang dapat diterima. Secara umum perawatan merupakan hal utama yang dilakukan pada sebuah pabrik untuk memperbaiki, memelihara, dan menjaga fasilitas sebelum adanya kerusakan(Wahyuny, 2021).

D. Waktu Pengoperasian Mesin

Pada hal ini peneliti mengambil data pada periode bulan Juni dan Juli mengenai hasil cetak end cover & support metal *plank*, dimana pada periode tersebut didapatkan data pada Tabel 3.

Tabel 3. Waktu operasional mesin

Bulan	Jam	Hari	Jumlah(pcs)
Juni	8	20	2000
Juli	8	23	1980

Apabila kita hitung waktu operasional mesin *press punching* di PT. Line One Indonesia adalah:

Bulan : Jumlah jam Per hari x Jumlah hari

Juni : $8 \times 20 = 160 \text{ jam}$ Juli : $8 \times 23 = 184 \text{ jam}$

Dari data yang di dapat bahwa pada bulan Juni mesin bergerak selama 160 jam dan 184 jam pada bulan juli. Berdasarkan pada data didapat bahwa pada bulan juni mampu membuat 2000 pcs dan 1980 pcs end cover & support metal plank pada bulan juli. Pada hal ini dalam hitungannya jika dilihat dari data tersebut didapatkan:

Bulan =
$$\frac{Hasil\ total}{Jumlah\ hari}$$
 = Hasil\ per\ hari

Juni = $\frac{2000}{20}$ = 100\ pcs\ per\ hari

Juli = $\frac{1980}{23}$ = 86\ pcs\ per\ hari

Berdasarkan data di atas dapat disimpulkan bahwa terjadi penurunan hasil produksi yang tentunya akan sangat merugikan. Faktor utama dari penurunan ini adalah berkurangnya performa mesin. Oleh karena itu, diperlukan perawatan yang terstruktur sesuai kebutuhan tiap bagiannya untuk mengembalikan ataupun meminimalisasi penurunan performa mesin. Perawatan yang terstruktur dan terdata membuat riwayat perawatan tercatat dengan lengkap sehingga bisa digunakan sebagai acuan untuk waktu perawatan pada waktu yang akan datang(Khanafi dan Utama, 2021). Berikut ini, peneliti membuat tabel perawatan preventif sebagai perawatan terstruktur dan akan diterapkan pada mesin pres punching pneumatik Komatsu 45 Ton di PT. Line One Indonesia pada Tabel 4.

Tabel 4. Perawatan Preventif

Interval	Aktivitas Perawatan	Tujuan	Tindakan		
Harian	Pengecekan Visual seluruh bagian mesin		Cek kebocoran udara, kebersihan, dan pengecekan komponen(baut, karet <i>shield</i> , dll)		
	Pengecekan tekanan udara	Memastikan tekanan udara sesuai SOP	Penyesuaian dengan menggunakan alat ukur tekanan udara		
	Pemeriksaan dan pemberian pelumas	Menghindari gesekan berlebih	Penambahan pelumas apabila level nya sudah menurun		
	Tes keselamatan (Tombol darurat, sensor, dan pelindung)	Memastikan keamanan operator	Tekan tombol darurat dan periksa fungsinya, pastikan pelindung terpasang dengan baik.		
Mingguan	Pembersihan filter udara pada sistem pneumatik	Menghindari hambatan keluaran udara	Bersihkan filter atau mengganti filter.		

	Pemeriksaan dan pengencangan baut dan mur	Mencegah kerusakan akibat getaran	Menggunakan kunci pas agar baut dan mur terpasang kuat.		
	Pemeriksaan kondisi <i>punch</i> dan <i>dies</i>	Memastikan kualitas hasil	Periksa visual keausan.		
	Pelumasan komponen bergerak	Mengurangi gesekan	Pelumasan dengan oli atau <i>Grease</i> sesuai kebutuhan mesin.		
	Pengecekan motor penggerak	Memastikan kesehatan mesin	Pengecekan dan pergantian bagian yang rusak		
	Pengecekan pompa udara	Memastikan pompa udara tidak bocor	Pengisian udara		
Bulanan	Pemeriksaan pada silinder pneumatik	Mendeteksi kebocoran	Pengecekan kondisi dan pergantian <i>part</i> jika dibutuhkan		
	Kalibrasi keselarasan <i>slider</i> , <i>punch</i> dan <i>die</i>	Memastikan kepresisian tekan	Gunakan alat ukur presisiuntuk mengukur keselarasan		
	Pemeriksaan sabuk (belt)	Menghindari kerusakan	Pemeriksaan keausan atau keretakan sabuk, ganti jika sudah tidak layak.		
	Pembersihan sistem pelumas	Menghilangkan residu pelumas lama	Bersihkan saluran pelumas dengan cairan atau pelarut khusus sebelum mengisi ulang.		
	Pengecekan relai	Menghindari kerusakan dan waktu henti mesin	Pengecekan ataupun pergantian relai		
	Pengecekan tabung udara	Mendeteksi kebocoran	Pengecekan kebocoran dan kemampuan isi		
	Indikator oli	Mendeteksi tingkat oli tersedia	Pengecekan pada sistem indikator		
	Regulator	Mendeteksi kebocoran	Memeriksa dan mengganti bagian yang rusak pada regulator		
Tahunan	Pemeriksaan menyeluruh komponen mesin	Pengecekan mesin secara <i>detail</i>	Lakukan inspeksi berdasar manual teknis pabrikan.		
	Penggantian suku cadang sesuai batas pakai	Mencegah kerusakan dan kerugian besar	Ganti semua komponen sesuai kebutuhan		
	Uji kinerja keseluruhan setelah perawatan	Memastikan mesin bekerja optimal	Operasikan mesin pada beban ringan untuk memastikan semua berfungsi dengan baik.		

Membersihka	Membersihkan		kan	Buang oli lama, bersihkan bagian	
filter oli	dan	sistem	bekerja	reservoir dan isi dengan pelumas	
mengganti	mengganti			baru.	
oli/grease	ke	_			
seluruh	sistem				
pelumas					
-					

Pembuatan tabel perawatan preventif di atas diharapkan dapat membantu dalam mempertahankan hasil cetak end cover & support metal plank dengan mesin pres punching pneumatik komatsu 45 ton di PT. Line One Indonesia. Untuk selanjutnya dalam penerapan perawatan preventif, teknisi mesin harus membuat sebuah catatan terkait perawatan mesin yang biasa

dikenal dengan log perawatan, log perawatan merupakan hal penting dalam manajemen perawatan yang memastikan bahwa semua peralatan berfungsi dengan baik dengan mencatat semua informasi terkait perawatan yang dilakukan(Asfariza dkk., 2022). Berikut merupakan contoh yang bisa di terapkan oleh teknisi dalam membuat catatan perawatan pada Tabel 5:

Tabel 5. Contoh tabel LOG perawatan

Tanggal	Interval	Aktivitas yang	Kondisi	Tindakan/	Nama	Tanda
Perawatan	Perawatan	dilakukan	Sebelum Sesudah	Perbaikan	Teknisi	Tangan

IV. Kesimpulan

Berdasarkan pada pembahasan diatas bisa disimpulkan bahwa faktor perawatan sangat mempengaruhi hasil, sehingga penerapan perawatan terstruktur pada mesin pres *punching* pneumatik komatsu 45 ton di PT. Line One Indonesia ini sangat diperlukan guna mempertahankan total hasil yang diproduksi, kualitas pada hasil cetaknya serta untuk menjaga kesehatan serta memperpanjang usia mesin. Pembuatan tabel perawatan preventif ini diharapkan bisa membantu dalam proses penerapan pada mesin tersebut.

Daftar pustaka

Adim, F. (2024). Pengaruh lama waktu pengepresan terhadap kualitas hasil press akrilik pada mesin press plakat akrilik. UNIVERSITAS MURIA KUDUS.

Armanda, Dicky, D., Jufriyanto, M., & Rizqi, A. W. (2023). Perencanaan Perawatan Mesin

dengan Metode Reliability Centered Maintenance (RCM) Pada PT. XYZ. *G-Tech: Jurnal Teknologi Terapan*, 7, 1588–1595.

Asfariza, A., Fitriadi, R., & Setiawan, P. (2022).

Perancangan Sistem Digital Log Book
Untuk Penggunaan Dan Perawatan
Peralatan Laboratorium Fakultas Teknik
Berbasis Website. Rekayasa Aplikasi
Perancangan Dan Industri, 11–17.

Kakali. (2023). *Metal Plank: Pengertian, Fungsi, dan Cara Menggunakannya*.
Tekno Safety Support Specialist.
https://teknoscaff.com/

Khabib, M., & Muhamadin, R. C. (2024). ANALISIS PERAWATAN MESIN CONVEYOR BATUBARA DI PT X. *ENIGMA*, *I*(1), 10–17.

Khanafi, S., & Utama, F. Y. (2021).

Perencanaan Preventive Maintenance
Schedule Permesinan Turning Di Bengkel
SMKX Surabaya Dengan Sheet From

- Terstruktur. *Indonesian Journal of Engineering and Technology (INAJET)*, 3(2), 76–85. https://doi.org/10.26740/inajet.v3n2.p76-85
- Putra, A. P., Saputra, A. A., & Angreni, A. (2021). PEMBUATAN MESIN PRES BANTALAN DENGAN MENGGUNAKAN PENGGERAK ELEKTRIK. In *Pharmacognosy Magazine* (Vol. 75, Issue 17). Politeknik Negeri Ujung Pandang Makasar.
- Rijal, M. I., Putra, A. Y. W., & Raihan, R. A. (2022). Analisis Perawatan Mesin Chain Scraper Conveyor Di Pt. Cemindo Gemilang Bayah. *Teknika*, 7(4), 191–199. https://doi.org/10.52561/teknika.v7i4.199
- Rubowo, R. (2019). Pembuatan Kontuksi Kempa HIDROLIK UNTUK PEMBUATAN PRODUK JADI DARI BAHAN KOMPOSIT. In Pembuatan Kontruksi Mesin Kempa Hidrolik Untuk Pembuatan Produk Jadi Dari Bahan Komposit.
- Sanam, Hamid Abdillah, O. R. (2022). Studi Kasus Kebocoran Horizontal Sand Mill Machine KWS-30L dengan Menerapkan Preventive Maintenance di PT. ACI. *Jurnal Pendidikan Teknik Mesin Undiksha*, 10(2), 94–106.
- Suryadi, M., Aswin, F., & Sukanto, S. (2023).

 Perencanaan Preventive Maintenance Pada
 Bengkel Mekanik SMKN 2
 Pangkalpinang. *Jurnal Inovasi Teknologi Terapan*, *1*(2), 405–412.

 https://doi.org/10.33504/jitt.v1i2.11
- Syahlan, A., & Santoso, D. B. (2024). Proses Maintenance dan Standarisasi Panel Kontrol Listrik Pada Mesin Press Chin Fong CCP 100 di PT Ciptaunggul Karya Abadi. *Jurnal Teknik Elektro Dan Komputasi (ELKOM)*, 6(1), 18–27. https://doi.org/10.32528/elkom.v6i1.2241
- Syahputra, M. R., Rosidi, & Yusyama, A. Y. (2022). Pemilihan Material pada Alat Bantu Penghubung Chuck dengan Tailstock pada Mesin Bubut di CV. Marabunta Machindo. *Prosiding Seminar Nasional Teknik Mesin*, 1, 631–637.
- Syaukani, M., Paundra, F., Qalbina, F., Dwi Arirohman, I., Yunesti, P., Studi Teknik Mesin, P., Teknologi Produksi dan Industri, J., Teknologi Sumatera, I., Terusan Ryacudu, J., Huwi, W., Jati

- Agung, K., Lampung Selatan, K., Studi Teknik Sistem Energi, P., & Studi Teknik Elektro, P. (2021). Desain dan Analisis Mesin Press Komposit Kapasitas 20 Ton. *Journal of Science, Technology, and Virtual Culture*, *1*(1).
- Wahyuny, R. (2021). Perencanaan Penjadwalan Preventive Maintenance Mesin Screw Press Di Pt. Persada Agro Sawita. In *Uin* Sultan Syarif Kasim Riau. Universitas Islam Negeri Sultan Syarif Kasim Riau.