ERROR ANALYSIS IN SOLVING GEOMETRY PROBLEMS BASED ON NEWMAN'S ERROR ANALYSIS REVIEWED FROM LEARNING STYLES

Fetty Nuritasari¹, Septi Dariyatul Aini²

^{1,2} Program Studi Pendidikan Matematika, FKIP, Universitas Madura e-mail: <u>fetty_math@unira.ac.id</u>

Abstract

The purpose of this study was to describe the types of student errors in solving problems based on Newman Error Analysis (NEA) in terms of learning styles, namely visual, auditory, and kinesthetic. This type of research uses qualitative-descriptive research. The technique used to collect data in this study was to fill out a learning style questionnaire, problem solving tests, interviews, and documentation and then triangulated to obtain valid data. The results showed: (1) subjects with visual learning styles made mistakes at the stage of process skills (process skills) and writing answers (encoding). (2) subjects with auditory learning styles make mistakes in the stages of understanding (comprehension), transformating (transformation), processing skills (process skills) and writing answers (encoding). (3) subjects with a kinesthetic learning style make mistakes in the transformation, process skills, and writing answers (encoding) stages.

Keywords: Analysis, Errors (NEA), Geometry, and Learning Style.

Abstrak

Dari observasi awal dalam memecahkan masalah geometri peserta didik lemah dalam memahami soal, dan kurang teliti dalam perhitungannya, sehingga menyebabkan hasil akhir yang salah. upaya untuk memahami dan mengkaji lebih dalam mengenai kesalahan peserta didik, pendidik hendaknya harus mengetahui faktor-faktor yang harus diperhatikan dalam mempelajari matematika adalah gaya belajar peserta didik. Terdapat tiga tipe gaya belajar yaitu visual, auditorial, dan kinestetik. Dan kesalahan-kesalahan yang dialami oleh peserta didik tersebut dapat dianalis menggunakan prosedur Newman's Error Analysis (NEA). Jenis penelitian yang digunakan adalah penelitian kualitatif-deskriptif dengan tujuan mendeskripsikan Mendeskripsikan jenis kesalahan peserta didik dalam memecahkan masalah berdasarkan Newman Error Analysis (NEA) ditinjau dari gaya belajarnya. Teknik yang digunakan untuk mengumpulkan data dalam penelitian ini adalah mengisi angket gaya belajar, tes pemecahan masalah, wawancara, dan dokumentasi yang kemudian ditriangulasikan untuk mendapatkan data yang valid. Hasil penelitian ini menunjukan bahwa (1) subjek WR dengan gaya belajar visual melakukan kesalahan di tahap keterampilan proses (process skills) dan penulisan jawaban (encoding). (2) subjek RY dengan gaya belajar auditorial melakukan kesalahan di tahap memahami (comprehension), trasformasi (transformation),keterampilan proses (process skill) dan penulisan jawaban (encoding).(3) subjek WR dengan gaya belajar kinestetik melakukan kesalahan di tahap trasnformasi (transformation), keterampilan proses (process skills), dan penulisan jawaban (encoding).

Kata kunci: Analisis, Kesalahan (NEA), Geometri, dan Gaya Belajar.

INTRODUCTION

Mathematics is very important for human life, because in daily activities humans cannot be separated from things that are mathematical, that is the reason why mathematics is a compulsory subject for students from elementary, junior high, high school up to college. One of the materials that plays an important role in learning mathematics is geometry. This geometry material is one of the important topics in mathematics. Initial observations about the geometry of students are weak in understanding the problem, and are less thorough in their calculations. It is the obligation of an educator to understand and examine more deeply about student errors, educators should not scold students if students experience errors in answering questions. Educators should guide students and find out about mistakes made by students so that these mistakes can be corrected and do not happen again. Educators should also know the factors that must be considered in studying mathematics, one of which is the characteristics of students. So that educators can implement a better learning system according to the characteristics possessed by students.

Characteristics of students who need to get attention from educators is their learning style. According to Rofiqoh (2016: 25) learning style is one of the important factors and concerns the way students understand certain lessons. In this case, it is important for educators to analyze the learning styles of their students so that they can carry out appropriate learning for students. DePorter & Hernacki (1992:117) classifies learning styles based on how to receive information easily (modalities) into three types, namely the visual type, the auditory type, and the kinesthetic type.

After knowing the learning styles of each student, it is expected that educators can help the difficulties experienced by students while solving math problems at certain stages. Further, the errors experienced by students can be analyzed using the Newman's Error Analysis (NEA) procedure. According to Newman's (in White, 2010: 133), there are several stages of student error in solving math problems, namely (1) reading, this stage is related to how someone reads the given problem so that it is related to how they understand facts and terms. given in the problem, (2) comprehension, this stage is related to how one can interpret what will be sought or asked from the question, (3) transformation, this stage is related to the strategy that will be used to answer the question, (4) process skills, this stage is the stage of problem solving or implementing strategies at the transformation stage, and (5) encoding, this stage is related to when students cannot write the correct answer in the form of numbers, symbols or words even though they have gone through the right stages of completion. .

Indicators that cause students to make mistakes in solving problems in the form of descriptions are based on the Newman procedure. The table of indicators that cause students to make these mistakes are as follows.

16 🔳

Stages in NEA		Indicator				
Reading (Reading)	a.	Students are not able to read or recognize				
		symbols in questions.				
	b.	Students are not able to interpret the meaning of				
		each word, term or symbol in the problem.				
Understanding	a.	Students do not understand what information is				
(Comprehension)		known in the problem completely.				
	b.	Students do not fully understand what is being				
		asked in the question.				
Transformation	a.	Students are not able to make mathematical				
(Transformation)		models from the information obtained.				
	b.	Students do not know the formula that will be				
		used to solve the problem.				
	с.	. Students do not know the arithmetic operations				
		that will be used to solve problems.				
Process skills(Process	a.	Students do not know the procedures or steps				
skills)		that will be used to solve the problem correctly.				
Writing answers	a.	Students are not able to find the final result of the				
(Encoding)		problem based on the procedures or steps that				
		have been used.				
	b.	Students cannot show the final answer of solving				
		the problem correctly.				
	с.	Students cannot write the final answer according				
		to the conclusion				

Table 1 Indicators of the Causes of Student Errors

Jha, Singh and White (in Sughesti et al, 2016:569)

Based on the description above, the problem regarding the types of student errors can be studied through the NEA and in terms of their learning style in solving math problems in geometry, the researchers are interested in conducting research with the title "Error Analysis in Solving Geometry Material Problems Based on Newman's Error Analysis (NEA) Judging from the Learning Style".

The benefit of this research is to provide an overview of the mistakes made by students in determining the solution to a mathematical problem which in this case is very necessary to continue to be investigated what are the causes. From the results of the study, it is expected that it will be taken into consideration in investigating the errors experienced by students, so that when carrying out the teaching process educators can provide methods that are in accordance with the learning styles of students.

RESEARCH METHODS

The type used in this research is qualitative-descriptive research. The type of research used is qualitative-descriptive research with the aim of describing the types of errors students make in solving problems based on Newman's Error Analysis in terms of learning styles. This research was conducted in one of the SMPN Pamekasan. The research subjects are even semester students for the 2021/2022 academic year. The number of subjects is 3 students.

The instrument used in this study consisted of the main instrument, which is the researcher herself, because the researcher herself was directly related to the research subject and was not represented by other people. Second, the auxiliary instrument consists of a learning style questionnaire, test questions I, test II, interviews and documentation. In order to make the questionnaires and tests to be feasible and valid for use in this study, validation was carried out by two experts, they are a mathematics lecturer and a colleague from the Madura University. In addition, because in this study, interviews will be conducted to obtain in-depth information, students who have good communication skills will be selected based on consultation between researchers and educators in the field of mathematics studies.

Subject selection begins with the provision of a learning style questionnaire, prospective subjects are grouped according to the results of the questionnaire, namely visual, auditory and kinesthetic learning styles.

After the subject was obtained, the subject was given a problem-solving ability test and an interview. To check the valid data, this study used time triangulation. Time triangulation in this study is to compare the data of the first test and interview with the second test and interview. If the first and second tests and interviews are inconsistent, it is necessary to do a third test and interview, then the results of the third test and interview are compared with the first and second tests and interviews. However, if the first, second and third tests and interviews have not been consistent, the errors will be continued with subsequent tests and interviews until the errors experienced by students are consistent.

18 🔳

RESULTS AND DISCUSSION

A. Research Subjects Type of Visual Learning Style (WR)

Error	Test I	Test II			
Indicator					
Process skills	WR was wrong in determining	WR is wrong in determining the			
	the hypotenuse of the base, WR	hypotenuse of the base, WR uses			
	used Pythagorean triples,	Pythagorean triples, namely 5,12			
	namely 3,5 and 7 according to	and 19 according to WR 19 is the			
	WR 7 was the hypotenuse and	hypotenuse and WR is wrong in			
	WR was also wrong in calculating	calculating the circumference of			
	the circumference of the base the base because h				
	because he incorrectly determined the base, acc				
	determined the base, according	to WR the base is a right triangle			
	to WR the base is a right triangle	so that the circumference of the			
	so that the circumference of the base is also wrong .				
	base is also wrong.				
Encoding	WR was wrong in the encoding	WR was wrong in the encoding			
	stage because the process skill	stage because the process skill			
	was wrong, causing the final	was wrong, causing the final			
	result to be wrong and WR	result to be wrong and WR			
	wrongly writing down the unit of	wrongly writing down the unit of			
	area, the unit of area should be	area, the unit of area should be			
	cm2 but according to WR the	cm2 but according to WR the			
	unit is cm	unit is cm			

Table 2 Types of Visual Subject Error

B. Students with Auditorial Learning Style (RY) Type

Table 3 Types of Auditorial Subject Errors

Error	Test I	Test II
Indicator		
Comprehensi	RY only wrote and mentioned	RY only wrote and mentioned
on	the length of the side of the cake	the length of the side of the cake
	on the first plate, which was 18	on the first plate, which was 24
	cm, while the length of the side	cm, while the length of the side
	of the second cake, which was 9	of the second cake, which was 12
	cm, was not mentioned and was	cm, was not mentioned and was
	not written.	not written.
Transformati	a. RY made an error in the	a. RY made an error in the
on	transformation stage	transformation stage
	because RY was wrong in	because RY was wrong in
	writing the arithmetic	writing the arithmetic
	operation on the formula for	operation on the formula
	the surface area of the prism,	for the surface area of
	according to RY, the surface	the prism, according to
	area of the prism=2·la+ka+tp	RY, the surface area of
	should be the surface area of	the prism=2·la+ka+tp
	the prism=2·la+ka·tp.	should be the surface
	b. RY made an error in the	area of the
	transformation stage	prism=2·la+ka·tp.
	because RY was wrong in	b. RY made an error in the
	writing the formula for the	transformation stage
	volume of the pyramid,	because RY was wrong in
	according to RY the volume	writing the formula for
	of the pyramid=1/3 area of	the volume of the
	the base×height of the base	pyramid, according to RY
	should be the volume of the	the volume of the
	pyramid=1/3 the area of the	pyramid=1/3 area of the
	base x the height of the	base×height of the base
	prism.	should be the volume of
		the pyramid=1/3 the
		area of the base x the
		height of the prism.

Process skills	a. RY made a mistake in the	a. RY made an error in the
	process skills stage because	process skills stage because
	RY wrongly determined the	RY incorrectly determined
	area of the base, RY assumed	the area of the base, RY
	that 64 was obtained from	assumed 36 was obtained
	the area of ABFE and	from the area of PQTU and
	according to RY the base of	according to RY the base of
	the prism was ABFE not	the prism was PQTU not
	ABCD while the problem was	PQRS, while the problem was
	the base was ABCD.	that the base was PQRS.
	b. RY made an error in the	b. RY made a mistake in the
	process skills stage because	process skills stage because
	in the previous stage the	in the previous stage the
	transformation had an error	transformation had an error
	so that the process skills	so that the process skills
	were wrong and RY was also	were wrong and RY was also
	wrong in calculating one side	wrong in calculating one side
	of the base, according to RY	of the base, according to RY
	the hypotenuse of the base is	the hypotenuse of the base is
	7, so the result of the	19, so the result of the
	circumference of the base is	circumference of the base is
	wrong.	wrong.
	c. RY made an error in the	c. RY made a mistake in the
	process skills stage because	process skills stage because
	in the previous stage RY had	in the previous stage, RY had
	an error in writing down the	an error in writing down the
	height of the base not the	height of the base not the
	height of the pyramid so that	height of the pyramid so that
	it was wrong to write down	it was wrong to write down
	the height, according to RY	the height, according to RY
	the height was 18, while the	the height was 24, while the
	correct one was 9 and RY was	correct one was 12 and RY
	wrong in calculating the area	was wrong in calculating the
	of the base, according to RY	area of the base, according
	the area of the base 18×18,	to RY, the area of the base
	obtained from the length of	24×24, obtained from the
	the side of the cube $ imes$ the	length of the side of the cube
	length of the side of the cube	× the length of the side of the
	so that the result of the area	cube so that the result of the
	of the base is wrong.	area of the base is wrong.
Encoding	RY made an error in the encoding	RY made an error in the encoding
	stage because RY was wrong in	stage because RY was wrong in
	drawing conclusions, according	drawing conclusions, according
	to RY the unit of volume is cm.	to RY the unit of volume is cm.

C. Research Subjects Type of Kinesthetic Learning Style (HT)

Table 4 Types of	f Kinesthetio	: Subject Errors
------------------	---------------	------------------

Error	Test I	Test II		
Indicator				
Transformati	HT made an error in the	R HT made an error in the		
on	transformation stage because	transformation stage because		
	HT wrote the formula for the	HT wrote the formula for the		
	volume of the cube wrong,	volume of the cube wrongly,		
	according to HT the volume of	according to HT the volume of		
	the cube =p×l×t, while the	the cube =p×l×t, while the		
	correct volume of the cube = s^3	correct volume of the cube =s^3		
Process skills	a. HT is wrong in determining	a. HT is wrong in determining		
	the hypotenuse of one of the	the hypotenuse of one of the		
	bases of the prism, according	bases of the prism, according		
	to HT the hypotenuse is 7, HT	to HT the hypotenuse is 19,		
	is wrong in calculating the	HT is wrong in calculating the		
	circumference of the base	circumference of the base		
	according to HT K=7+7+5+6,	according to HT		
	the heights of the triangles	K=19+19+12+10, the heights		
	are also added up, the	of the triangles are also		
	heights should not be added	added up, the heights should		
	up enough only the side of	not be added up enough only		
	the triangle, HT is wrong in	side of the triangle, HT is		
	writing the height, according	wrong in writing the height,		
	to HT the height here is the	e according to HT the height		
	height of the base not the	here is the height of the base		
	prism height, while what is	not the prism height, while		
	meant is the prism height	what is meant is the prism		
	and HT is also wrong in	height, and HT is also wrong		
	calculating, according to HT	in calculating, according to		
	2·25+25·5 = add up first	HT 2·60+60·12 = add up first		
	25+25 then the result of the	60+ 60 then the sum is		
	sum is multiplied, it should	multiplied, it should be		
	be multiplied first before	multiplied first and then		
	adding it.	added up.		
	b. b. HT made an error in the	b. b. HT made an error in the		
	process skills stage because:	process skills stage because:		
	HT was not careful in	HT was not careful in		
	calculating the volume of the	calculating the volume of the		
	cube.	cube		
Encoding	a. HT made an error in the	a. HT made an error in the		
	encoding stage because the	encoding stage because the		
	process skill was wrong so	process skill was wrong so		
	that the final result was also	that the final result was also		
	wrong and HT was also	wrong and HT was also		

Vol. 7, No. 1, January 2023, 15-25

	wrong i	n c	drawing		wrong	in	drawing
	conclusions, according to HT				conclusions, according to HT		
	the unit of vo	lume is o	cm.		the unit of volume is cm.		
b.	HT made ar	n error	in the	b.	HT made	an error	in the
	encoding sta	ge beca	use the		encoding	stage be	cause the
	process skil	l was	wrong,		process s	kill was v	vrong,
	namely the	volume	of the		where the	e volume	e of the
	cube was w	rong so	that it		cube was	wrong s	o that it
	caused the remaining			caused the remaining			
	volume of t	he cake	to be		volume o	f the cak	e to be
	wrong, th	e rer	naining		wrong, th	ne remair	ning
	volume of	the cak	ke was		volume o	f the cak	e was
	obtained fror	n the vo	lume of		obtained	from the	volume of
	the cube - the volume of the			the cube	- the volu	ume of the	
	pyramid and l	HT was w	rong in		pyramid a	and HT w	as also
	drawing	conc	lusions,		wrong in	drawing	
	according to	HT the	unit of		conclusio	ns, accor	ding to HT
	volume is cm				the unit c	of volume	e is cm.

CONCLUSIONS AND SUGGESTIONS

1. Type of Subject Error : Type Visual Learning Style (WR)

WR made mistakes in the process skills and writing answers (encoding). Process skills errors are errors in the process of calculating the Pythagorean Theorem, in test I the Pythagorean results are 3, 5 and 7, in test II the Pythagorean results are 5, 12, and 19, and wrong in calculating the circumference of the base of the prism. The encoding error is wrong because the process skill has an error, and it is also wrong in determining the unit of the prism surface area because according to the student the unit is cm.

2. Type of Subject Error Type : Auditorial Learning Style (RY)

RY made mistakes in the stages of understanding (comprehension), transformation (transformation), process skills (process skills) and writing answers (encoding). Comprehension error is that students do not understand the information that is drawn. The transformation error is incorrect in determining the operation in the formula used, the operation used should be multiplication but the student uses addition. Process skill errors, namely: wrong in calculating the Pythagorean Theorem, wrong in determining the height of the pyramid. Encoding error is incorrect in determining the correct unit. The student assumes that the unit of volume is cm.

3. Type of Subject Error : Type of Kinesthetic Learning Style (HT)

HT made mistakes at the transformation stage, process skills, and writing answers (encoding). Transformation error. That is wrong in using the formula for the volume of a cube, according to the student, the formula for the volume of a cube is =p×l×t. Process skill errors, namely wrong in calculating the Pythagorean theorem, wrong in calculating the circumference of the base to calculate the circumference. The student also adds up the height of the base and is wrong in calculating the volume of the cube. The encoding error is wrong in determining the right unit, the student assumes that the unit of volume is cm.

Based on the explanation above, it can be concluded that the types of errors made by visual (WR), auditorial (RY) and kinesthetic (HT) subjects have several similarities, namely: RY and HT both make mistakes in the transformation stage, and WR, RY, and HT both made mistakes in the process skills and encoding stages.

Suggestion

- From the results of the study, it was revealed that the subject did not understand the prerequisite material, namely the Pythagorean Theorem, where it made the subject being less ready to accept new material, and therefore educators should ensure in advance that the student has completed the prerequisite material at the beginning of learning.
- 2. From the results of the study, it was revealed that the subject was not used to working on questions that were different from the sample questions given by the educator, this resulted in the subject experiencing errors when doing the test, therefore educators should also provide examples of different questions so that students get used to it. working on questions that are relatively new, besides that the subject is also less careful when working on questions and is unable to determine the right unit, therefore educators should also familiarize students with solving problems in their entirety from writing what is known to the final conclusion.

DAFTAR PUSTAKA

Arikunto, S. 2010. Prosedur Penelitian Suatu Pendekatan Praktik. Yogyakarta: PT Rineka Cipta.

24 🔳

- Deporter, B. & Hernacki, M. 1992. *Quantum learning: Membiasakan Belajar Nyaman dan Menyenangkan*. Dari Google Books,(Online), (<u>https://books.google.co.id</u>). Diakses 10 November 2017.
- Moleong, L. 2010. *Metodologi Penelitian Kualitatif. Bandung*: PT Remaja Rosdakarya.
 Rofiqoh, Z. dkk. (2016). "Analisis Kemampuan Pemecahan Masalah Siswa Kelas X Dalam
 Pembelajaran *Discovery Lerning* Berdasarkan Gaya Belajar Siswa". *Unnes Journal Of Mathematics Education*, (online). 5 (1): 25-32 (<u>http://lib.unnes.ac.id/22322/</u>), diakses 6
 November 2017.
- Sughesti, M.M. Dkk. Jenis Kesalahan Siswa Dalam Menyelesaikan Soal Cerita Berdasarkan
 Prosedur Newman. *Pendidikan Matematika Pascasarjana Universitas Negeri Malang.*Sugiyono, 2008. *Metode Penelitian pendidikan Pendekatan Kuantitatif, Kualitatif dan R & D.* Bandung:Alfabeta.
- White, A. L. 2010. "Numeracy, Literacy and Newman's Error Analysis". Journal of Science and Mathematics Education in Southeast Asia 2010, (online).. 33 (2):129-148.
 (http://www.recsam.edu.my/R&D Journals/YEAR2010/dec2010vol2/allan(129 148).pdf), diakses 6 November 2017.