Konvergensi Analisa Numerik Akibat Gaya Luar pada Rangka Beton Sederhana
Abstract
Abstrak— Analisa dinamik pada struktur merupakan tahapan lanjutan bagi profesional konstruksi
dalam memahami bagaimana suatu struktur akan berperilaku. Jurnal ini meneliti konvergensi
perhitungan numerik tiga metode yang sering digunakan, yaitu Newmark, Chung-Hulbert dan Central
Difference. Rangka beton 2 lantai akan menjadi acuan untuk melihat keandalan ketiga metode
numerik tersebut, ekstraksi matriks K dan matriks M akan diambil dari program bantu SAP2000 dan
iterasi numerik akan memakai python sebagai solver nya. Kecepatan konvergensi untuk kondisi tanpa
beban luar dicapai lebih cepat 1.5% dengan eksplisit central difference, sedangkan Newmark dan
Chung-Hulbert tetap mencapai konvergen meskipun dnegan pengaruh beban luar.
Abstract - Dynamic analysis of structures is an advanced stage for construction professionals in
understanding how a structure will behave. This journal examines the convergence of numerical
calculations of three frequently used methods, namely Newmark, Chung-Hulbert and Central
Difference. The 2-storey concrete frame will be a reference to see the reliability of the three numerical
methods, the extraction of matrix K and matrix M will be taken from the SAP2000 output and
numerical iteration will use python solver. The convergence rate for conditions without external load
was achieved 1.5% faster with explicit central difference, while Newmark and Chung-Hulbert still
achieved convergence despite the influence of external loads.
Full Text:
PDFReferences
S. Rostami dan R. Kamgar, “Insight to the Newmark
Implicit Time Integration Method for Solving the
Wave Propagation Problems,” Iranian Journal of
Science and Technology, Transactions of Civil
Engineering, vol. 46, no. 1, hlm. 679–697, Feb 2022,
doi: 10.1007/s40996-021-00599-7.
V. H. Mucino, “CRASH,” dalam Encyclopedia of
Vibration, Elsevier, 2001, hlm. 302–314. doi:
1006/rwvb.2001.0164.
G. M. Hulbert dan J. Chung, “Explicit time
integration algorithms for structural dynamics with
optimal numerical dissipation,” Comput Methods
Appl Mech Eng, vol. 137, no. 2, hlm. 175–188, Okt
, doi: 10.1016/S0045-7825(96)01036-5.
T. Y. Lee, K. J. Chung, dan H. Chang, “A new
implicit dynamic finite element analysis procedure
with damping included,” Eng Struct, vol. 147, hlm.
–544, Sep 2017, doi:
1016/j.engstruct.2017.06.006.
J. Kortiš dan L. Daniel, “Application of the Newmark
Numerical Method with Contact Algorithm to the
Solution of the Vehicle-bridge Interaction,” Procedia
Eng, vol. 153, hlm. 298–303, 2016, doi:
1016/j.proeng.2016.08.119.
N. A. Azizah, S. Sukarmin, dan M. Masykuri,
“Analysis of teacher’s ability in planning and
implementing learning on vibration, wave and sound
submaterials,” J Phys Conf Ser, vol. 1806, no. 1, hlm.
, Mar 2021, doi: 10.1088/1742-
/1806/1/012132.
S. A. R. S. Hasibuan dan A. A. Qolby, “Solution of
Beam Structure Analysis Using SAP2000,”
International Journal of Innovative Research in
Computer Science & Technology, vol. 11, no. 1, Jan
, doi: 10.55524/ijircst.2023.11.1.13.
G. Golub dan W. Kahan, “Calculating the Singular
Values and Pseudo-Inverse of a Matrix,” Journal of
the Society for Industrial and Applied Mathematics
Series B Numerical Analysis, vol. 2, no. 2, hlm.
–224, Jan 1965, doi: 10.1137/0702016.
S. Pradhan dan S. V. Modak, “A two-stage approach
to updating of mass, stiffness and damping matrices,”
Int J Mech Sci, vol. 140, hlm. 133–150, Mei 2018,
doi: 10.1016/j.ijmecsci.2018.02.033.
DOI: http://dx.doi.org/10.31000/civil.v6i1.11132
Article Metrics
Abstract - 99 PDF - 201Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
CURRENT INDEXING STRUCTURE
------------------------------------------------------------------------------------------------------------------------------------------------