Policy Communication on Twitter Social Media: Covid-19 Pandemic Control in Samarinda and Balikpapan City
Abstract
Online media in disaster mitigation has received much attention from researchers. One of the most widely used online media is Twitter. Twitter is a type of social media that has become an effective medium for communication and socialization. The use of social media by the Government can make it easier for the Government to gather new ideas and opinions from the public, especially in this media. The social case related to Covid-19. This study aims to identify the communication of Covid-19 control policies at the City level, which is carried out through social media communication facilities. Samarinda City Government Twitter Account (@ppid_smr) and Balikpapan City Twitter account (@PemkotBPN). This study uses a qualitative method with a Qualitative Data Analysis (QDA) Miner approach used in the content, network, and cloud analysis using Nvivo 12 Plus software. The findings show that the intensity of each account has provided an overview of how the City Government is disseminating information related to the policies they produce. For the highest total tweet intensity and tweet intensity generated by the Samarinda City Government account @ppid_smr with a reasonably significant difference compared to the Balikpapan City Government account @PemkotBPN. In terms of analyzing the content of information shared related to the Covid-19 pandemic theme, each account has disseminated information directly related to the policy for handling and preventing Covid-19 cases in each city.
Keywords: Policy communication, policy controlling, Covid-19, Samarinda, Balikpapan
ABSTRAK
Media online dalam mitigasi bencana mendapat banyak perhatian dari para peneliti. Salah satu media online yang paling banyak digunakan adalah Twitter, Twitter merupakan salah satu jenis media sosial yang menjadi media komunikasi dan sosialisasi yang efektif. Penggunaan media sosial oleh pemerintah dapat memudahkan pemerintah untuk mengumpulkan ide-ide baru dan opini baru dari masyarakat, khususnya di media ini. Kasus sosial terkait Covid-19. Penelitian ini bertujuan untuk mengidentifikasi komunikasi kebijakan pengendalian Covid-19 di tingkat Kota yang dilakukan melalui sarana komunikasi media sosial. Akun Twitter Pemkot Samarinda (@ppid_smr) dan akun Twitter Pemkot Balikpapan (@PemkotBPN). Penelitian ini menggunakan metode kualitatif dengan pendekatan Qualitative Data Analysis (QDA) Miner yang digunakan dalam analisis konten, jaringan, dan cloud menggunakan software Nvivo 12 Plus. Temuan menunjukkan bahwa intensitas masing-masing akun telah memberikan gambaran bagaimana Pemerintah Kota menyebarluaskan informasi terkait kebijakan yang mereka hasilkan. Total intensitas tweet dan intensitas tweet tertinggi dihasilkan oleh akun Pemkot Samarinda @ppid_smr dengan perbedaan yang signifikan dibandingkan dengan akun Pemkot Balikpapan @PemkotBPN. Dalam hal menganalisis konten informasi yang dibagikan terkait tema pandemi Covid-19, masing-masing akun telah melakukan sosialisasi langsung terkait kebijakan penanganan dan pencegahan kasus Covid-19 di masing-masing kota.
Kata Kunci: Komunikasi kebijakan, kebijakan pengendalian, Covid-19, Samarinda, Balikpapan
Full Text:
PDFReferences
Ahmed, W., Seguí, F. L., Vidal-Alaball, J., & Katz, M. S. (2020). COVID-19 and the "Film Your Hospital" conspiracy theory: Social network analysis of Twitter data. Journal of Medical Internet Research, 22(10). https://doi.org/10.2196/22374
Akbar, P., Irawan, B., Taufik, M., Nurmandi, A., & Suswanta. (2021). Social Media in Politic: Political Campaign on United States Election 2020 Between Donald Trump and Joe Biden. In Communications in Computer and Information Science: Vol. 1499 CCIS (pp. 359-367). https://doi.org/10.1007/978-3-030-90179-0_46
Antony, M. (2008). "What is social media." London: iCrossing. https://ebooks.publish.csiro.au/author/Antony%2CLucille M. K.
Bal, R., de Graaff, B., van de Bovenkamp, H., & Wallenburg, I. (2020). Practising Corona - Towards a research agenda of health policies. Health Policy, 124(7), 671-673. https://doi.org/10.1016/j.healthpol.2020.05.010
Batara, E., Nurmandi, A., Warsito, T., & Pribadi, U. (2018). Are government employees adopting local e-government transformation?: The need for having the right attitude, facilitating conditions and performance expectations. Transforming Government: People, Process and Policy, 11(3), 343-376.
Benetoli, A., Chen, T. F., & Aslani, P. (2018). How patients' use of social media impacts their interactions with healthcare professionals. Patient Education and Counseling, 101(3), 439-444. https://doi.org/10.1016/j.pec.2017.08.015
Brandão, C. (2015). P. Bazeley and K. Jackson, Qualitative Data Analysis with NVivo (2nd ed.) . Qualitative Research in Psychology, 12(4), 492-494. https://doi.org/10.1080/14780887.2014.992750
Chen, E., Lerman, K., & Ferrara, E. (2020). Tracking social media discourse about the COVID-19 pandemic: Development of a public coronavirus Twitter data set. JMIR Public Health and Surveillance, 6(2). https://doi.org/10.2196/19273
Chen, M. K., Chevalier, J. A., & Long, E. F. (2020). Nursing home staff networks and COVID-19. Proceedings of the National Academy of Sciences of the United States of America, 118(1). https://doi.org/10.1073/pnas.2015455118
Cinelli, M., Quattrociocchi, W., Galeazzi, A., Valensise, C. M., Brugnoli, E., Schmidt, A. L., Zola, P., Zollo, F., & Scala, A. (2020). The COVID-19 social media infodemic. Scientific Reports, 10(1), 1-18. https://doi.org/10.1038/s41598-020-73510-5
Delerue, H., Kaplan, A. M., & Haenlein, M. (2012). Social media: Back to the roots and back to the future. Journal of Systems and Information Technology, 14(2), 101-104. https://doi.org/10.1108/13287261211232126
Efrida, S., & Diniati, A. (2020). Pemanfaatan fitur media sosial Instagram dalam membangun personal branding Miss International 2017. Jurnal Kajian Komunikasi, 8(1), 57-71. https://doi.org/10.24198/jkk.v8i1.23365
Erku, D. A., Belachew, S. A., Abrha, S., Sinnollareddy, M., Thomas, J., Steadman, K. J., & Tesfaye, W. H. (2021). When fear and misinformation go viral: Pharmacists' role in deterring medication misinformation during the "infodemic" surrounding COVID-19. Research in Social and Administrative Pharmacy, 17(1), 1954-1963. https://doi.org/10.1016/j.sapharm.2020.04.032
Freiling, I., Krause, N. M., Scheufele, D. A., & Brossard, D. (2021). Believing and sharing misinformation, fact-checks, and accurate information on social media: The role of anxiety during COVID-19. New Media and Society. https://doi.org/10.1177/14614448211011451
Graue, C. (2015). Qualitative data analysis. International Journal of Sales, Retailing & Marketing, 4(9), 5-14. https://doi.org/10.1017/S0890060400000937
Haupt, M. R., Jinich-Diamant, A., Li, J., Nali, M., & Mackey, T. K. (2021). Characterizing twitter user topics and communication network dynamics of the "Liberate" movement during COVID-19 using unsupervised machine learning and social network analysis. Online Social Networks and Media, 21(July 2020), 100114. https://doi.org/10.1016/j.osnem.2020.100114
Himelboim, I., Smith, M., & Shneiderman, B. (2013). Tweeting Apart: Applying Network Analysis to Detect Selective Exposure Clusters in Twitter. Communication Methods and Measures, 7(3), 169-197. https://doi.org/10.1080/19312458.2013.813922
Hong, S., & Kim, S. H. (2016). Political polarization on twitter: Implications for the use of social media in digital governments. Government Information Quarterly, 33(4), 777-782. https://doi.org/10.1016/j.giq.2016.04.007
Irawan, A. W., Yusufianto, A., Agustina, D., & Dean, R. (2020). Laporan Survei Internet Apjii 2019-2020 (Q2) (Vol. 2020).
Irawan, B. (2022). Policies for controlling the covid-19 pandemic through social media communications by the East Kalimantan provincial government. International Journal of Communication and Society, 4(1), 125-136.
Islam, A. K. M. N., Laato, S., Talukder, S., & Sutinen, E. (2020). Misinformation sharing and social media fatigue during COVID-19: An affordance and cognitive load perspective. Technological Forecasting and Social Change, 159(July), 120201. https://doi.org/10.1016/j.techfore.2020.120201
Kavanaugh, A. L., Fox, E. A., Sheetz, S. D., Yang, S., Li, L. T., Shoemaker, D. J., Natsev, A., & Xie, L. (2012). Social media use by Government: From the routine to the critical. Government Information Quarterly, 29(4), 480-491. https://doi.org/10.1016/j.giq.2012.06.002
Khan, S. M., Chowdhury, M., Ngo, L. B., & Apon, A. (2020). Multi-class twitter data categorization and geocoding with a novel computing framework. Cities, 96(October 2018), 102410. https://doi.org/10.1016/j.cities.2019.102410
Kosasih, I. (2016). Peran Media Sosial Facebook dan Twitter Dalam Membangun Komunikasi (Persepsi dan Motifasi Masyarakat Jejaring Sosial Dalam Pergaulan). Lembaran Masyarakat: Jurnal Pengembangan Masyarakat Islam, 2(1), 29-42. https://doi.org/10.1017/CBO9781107415324.004
Kosorukov, A. A. (2017). Digital government model: Theory and practice of modern public administration. Journal of Legal, Ethical and Regulatory Issues, 20(3). https://www.scopus.com/inward/record.uri?eid=2-s2.0-85041524765&partnerID=40&md5=21e54e301279d9c17c3d652f32e73ac2
Loilatu, M. J., Irawan, B., Salahudin, S., & Sihidi, I. T. (2021). Analysis of Twitter's Function as a Media communication of Public Transportation. Jurnal Komunikasi, 13(1), 54. https://doi.org/10.24912/jk.v13i1.8707
Machmud, M., Irawan, B., Karinda, K., Susilo, J., & Salahudin, . (2021). Analysis of the Intensity of Communication and Coordination of Government Officials on Twitter Social Media during the Covid-19 Handling in Indonesia. Academic Journal of Interdisciplinary Studies, 10(3), 319. https://doi.org/10.36941/ajis-2021-0087
Madakam, S., Ramaswamy, R., & Tripathi, S. (2015). Internet of Things (IoT): A Literature Review. Journal of Computer and Communications, 03(05), 164-173. https://doi.org/10.4236/jcc.2015.35021
Näkki, P., Bäck, A., Ropponen, T., Kronqvist, J., Hintikka, K. A., Harju, A., Pöyhtäri, R., & Kola, P. (2011). Social media for citizen participation report on the somus project. In VTT Publications (Issue 755).
Olivia, S., Gibson, J., & Nasrudin, R. (2020). Indonesia in the Time of Covid-19. Bulletin of Indonesian Economic Studies, 56(2), 143-174. https://doi.org/10.1080/00074918.2020.1798581
Park, H., Reber, B. H., & Chon, M. G. (2016). Tweeting as health communication: Health organizations use of twitter for health promotion and public engagement. Journal of Health Communication, 21(2), 188-198. https://doi.org/10.1080/10810730.2015.1058435
Park, H. W., Park, S., & Chong, M. (2020). Conversations and medical news frames on twitter: Infodemiological study on COVID-19 in South Korea. Journal of Medical Internet Research, 22(5). https://doi.org/10.2196/18897
Park, S., Han, S., Kim, J., Molaie, M. M., Vu, H. D., Singh, K., Han, J., Lee, W., & Cha, M. (2021). COVID-19 discourse on twitter in four asian countries: Case study of risk communication. Journal of Medical Internet Research, 23(3), 1-17. https://doi.org/10.2196/23272
Pratiwi, S. A., & Hidayat, D. (2020). Iklan Layanan Masyarakat COVID-19 Di Media Sosial dan Perilaku Masyarakat di Jawa Barat. Komunikologi (Jurnal Ilmiah Ilmu Komunikasi), 17(2), 1-7.
Purnomo, E. P., Loilatu, M. J., Nurmandi, A., Salahudin, Qodir, Z., Sihidi, I. T., & Lutfi, M. (2021). How Public Transportation Use Social Media Platform during Covid-19: Study on Jakarta Public Transportations' Twitter Accounts? Webology, 18(1), 1-19. https://doi.org/10.14704/WEB/V18I1/WEB18001
Ranjan, S., & Sood, S. (2016). Exploring Twitter for Large Data Analysis. International Journal of Advanced Research in Computer Science and Software Engineering, 6(7), 325-330.
Rosenberg, H., Syed, S., & Rezaie, S. (2020). The Twitter pandemic: The critical role of Twitter in the dissemination of medical information and misinformation during the COVID-19 pandemic. Canadian Journal of Emergency Medicine, 22(4), 418-421. https://doi.org/10.1017/cem.2020.361
Sayogo, D. S., Nam, T., & Zhang, J. (2011). The role of trust and ICT proficiency in structuring the cross-boundary digital government research. In 3rd International Conference on Social Informatics, SocInfo 2011: Vol. 6984 LNCS (pp. 67-74). https://doi.org/10.1007/978-3-642-24704-0_12
Shahi, G. K., Dirkson, A., & Majchrzak, T. A. (2021). An exploratory study of COVID-19 misinformation on Twitter. Online Social Networks and Media, 22(September 2020), 100104. https://doi.org/10.1016/j.osnem.2020.100104
Sharmin, F., & Sultan, M. T. (2020). The power of social media marketing on young consumers' travel-related co-creation behavior. In M. G. (Ed.), 12th International Conference on Social Computing and Social Media, SCSM 2020, held as part of the 22nd International Conference on Human-Computer Interaction, HCII 2020: Vol. 12195 LNCS (pp. 401-414). Springer. https://doi.org/10.1007/978-3-030-49576-3_29
Silver, C., & Lewins, A. (2007). QDA Miner 3 . 2 ( with WordStat & Simstat ) Distinguishing features and functions. Database, 2.
Song, C., & Lee, J. (2016). Citizens Use of Social Media in Government, Perceived Transparency, and Trust in Government. Public Performance and Management Review, 39(2), 430-453. https://doi.org/10.1080/15309576.2015.1108798
Sotiriadou, P., Brouwers, J., & Le, T. A. (2014). Choosing a qualitative data analysis tool: A comparison of NVivo and Leximancer. Annals of Leisure Research, 17(2), 218-234. https://doi.org/10.1080/11745398.2014.902292
Sparrow, R., Dartanto, T., & Hartwig, R. (2020). Indonesia Under the New Normal: Challenges and the Way Ahead. Bulletin of Indonesian Economic Studies, 56(3), 269-299. https://doi.org/10.1080/00074918.2020.1854079
Szmuda, T., Ali, S., Özdemir, C., Syed, M. T., Singh, A., Hetzger, T. V., Rosvall, P., Fedorow, K., Alkhater, A., Majlöf, A., Albrahim, M., Alquraya, E., Dunquwah, R. Al, Al-Hakeem, Z., Almohisin, E., Alradhi, M., Zydowicz, W. M., Müller, C., Egeland, A., … Kieronska, S. (2020). Datasets and future research suggestions concerning SARS-CoV-2. European Journal of Translational and Clinical Medicine, 3(2), 80-85. https://doi.org/10.31373/ejtcm/124734
Woolf, N. H., & Silver, C. (2017). Qualitative analysis using nvivo: The five-level QDA® method. Qualitative Analysis Using NVivo: The Five-Level QDA Method, 1-212. https://doi.org/10.4324/9781315181660
DOI: http://dx.doi.org/10.31000/nyimak.v6i2.6078
Article Metrics
Abstract - 1124 PDF - 743Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Nyimak : Journal of Communication
Communication Science Study Program, Faculty of Social and Political Sciences, Universitas Muhammadiyah Tangerang.
Jl.Mayjen Sutoyo No.2 Kota Tangerang, West Java. Provinsi Banten 15111 Indonesia.
nyimak_journal@umt.ac.id
journalnyimak@gmail.com
Nyimak: Journal of Communication already indexed by:
Nyimak: Journal of Communication is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.