PERBANDINGAN DATA UNTUK MEMPREDIKSI KETEPATAN STUDI BERDASARKAN ATRIBUT KELUARGA MENGGUNAKAN MACHINE LEARNING

Wijiyanto Wijiyanto, Afu Ichsan Pradana, Sopingi Sopingi

Abstract


Keberhasilan mahasiswa dalam menyelesaikan pendidikan tepat waktu merupakan tujuan yang penting. Berbagai faktor dapat memengaruhi keberhasilan ini, termasuk faktor non-akademik seperti data keluarga. Data yang digunakan berasal dari FIKOM-UDB dengan 365 record dan 11 atribut, di antaranya satu atribut berperan sebagai label (class). Data tersebut diproses menggunakan algoritma machine learning menggunakan pemodelan naïve bayes dan neural network. Sebelumnya, data dibagi menjadi data latih dan data uji dengan perbandingan prosentase yang berbeda, yaitu 90:10, 80:20, 70:30, 60:40, dan 50:50, untuk mencari kinerja terbaik berdasarkan nilai akurasi. Evaluasi menggunakan confusion matrix menghasilkan performa terbaik untuk naïve bayes dengan perbandingan 80:20, mencapai nilai akurasi sebesar 92%, precision 0.93, recall 0.98, dan F1-score 0.96. Sementara untuk neural network, performa terbaik terdapat pada perbandingan 50:50 dengan nilai akurasi sebesar 91%, precision 0.93, recall 0.97, dan F1-score 0.95. Hasil menunjukkan bahwa performa terendah untuk naïve bayes terjadi pada perbandingan 90:10, sementara untuk neural network terjadi pada perbandingan 80:20. Dengan demikian, algoritma naïve bayes menunjukkan performa yang lebih baik dibandingkan neural network sehingga, Fakultas dapat menerapkan model naïve bayes dalam memprediksi mahasiswa dalam rangka untuk mengantisipasi dan mengatasi permasalahan yang timbul terkait kelulusan mahasiswa dengan tepat waktu.

Full Text:

PDF

References


Abuzinadah, Nihal, Muhammad Umer, Abid Ishaq, Abdullah Al Hejaili, Shtwai Alsubai, Ala’ Abdulmajid Eshmawi, Abdullah Mohamed, and Imran Ashraf. 2023. “Role of Convolutional Features and Machine Learning for Predicting Student Academic Performance from MOODLE Data” edited by M. Hammad. PLOS ONE 18(11):e0293061. doi: 10.1371/journal.pone.0293061.

Amalia, Hilda, Ari Puspita, Ade Fitria Lestari, and Frieyadie Frieyadie. 2022. “Application Of Decision Tree And Naive Bayes On Student Performance Dataset.” Jurnal Pilar Nusa Mandiri 18(1):53–58. doi: 10.33480/pilar.v18i1.2714.

Awangga, Rolly Maulana, and Nuha Hanifatul Khonsa’. 2022. “Analisis Performa Algoritma Random Forest Dan Naive Bayes Multinomial Pada Dataset Ulasan Obat Dan Ulasan Film.” InComTech : Jurnal Telekomunikasi Dan Komputer 12(1):60. doi: 10.22441/incomtech.v12i1.14770.

Azahari, Azahari, Yulindawati Yulindawati, Dewi Rosita, and Syamsuddin Mallala. 2020. “Komparasi Data Mining Naive Bayes dan Neural Network memprediksi Masa Studi Mahasiswa S1.” Jurnal Teknologi Informasi dan Ilmu Komputer 7(3):443–52. doi: 10.25126/jtiik.2020732093.

Haryatmi, Emy, and Sheila Pramita Hervianti. 2021. “Penerapan Algoritma Support Vector Machine Untuk Model Prediksi Kelulusan Mahasiswa Tepat Waktu.” Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) 5(2):386–92. doi: 10.29207/resti.v5i2.3007.

Hasibuan, Tuhfatul Habibah, and Deni Mahdiana. 2023. “Prediksi Kelulusan Mahasiswa Tepat Waktu Menggunakan Algoritma C4.5 Pada Uin Syarif Hidayatullah Jakarta.” SKANIKA 6(1):61–74. doi: 10.36080/skanika.v6i1.2976.

Irawan, Indra, M. Riski Qisthiano, Muhammad Syahril, and Pamuji M. Jakak. 2023. “Optimasi Prediksi Kelulusan Tepat Waktu: Studi Perbandingan Algoritma Random Forest dan Algoritma K-NN Berbasis PSO.” Jurnal Pengembangan Sistem Informasi dan Informatika 4(4):26–35. doi: 10.47747/jpsii.v4i4.1374.

Issah, Iddrisu, Obed Appiah, Peter Appiahene, and Fuseini Inusah. 2023. “A Systematic Review of the Literature on Machine Learning Application of Determining the Attributes Influencing Academic Performance.” Decision Analytics Journal 7:100204. doi: 10.1016/j.dajour.2023.100204.

Jananto, Arief, Sulastri Sulastri, Eko Nur Wahyudi, and Sunardi Sunardi. 2021. “Data Induk Mahasiswa sebagai Prediktor Ketepatan Waktu Lulus Menggunakan Algoritma CART Klasifikasi Data Mining.” Jurnal Sisfokom (Sistem Informasi dan Komputer) 10(1):71–78. doi: 10.32736/sisfokom.v10i1.991.

Kurniadi, Dede, Fitri Nuraeni, and Sri Mulyani Lestari. 2022. “Implementasi Algoritma Naïve Bayes Menggunakan Feature Forward Selection dan SMOTE Untuk Memprediksi Ketepatan Masa Studi Mahasiswa Sarjana.” Jurnal Sistem Cerdas 5(2):63–82. doi: 10.37396/jsc.v5i2.215.

Muhamad Ziaul Haq and Nursalim. 2023. “Prediksi Indeks Prestasi Komulatif Mahasiswa berdasarkan Nem dengan Menggunakan Algoritma Neural Network Berbasis Particle Swarm Optimization: Prediction of Student Comulative Achievement Index Based on NEM Using Particle Swarm Optimization Based Neural Network Algorithm.” Jurnal Kolaboratif Sains 6(2):147–53. doi: 10.56338/jks.v6i2.3303.

Muhammad Haris Diponegoro, Sri Suning Kusumawardani, and Indriana Hidayah. 2021. “Tinjauan Pustaka Sistematis: Implementasi Metode Deep Learning pada Prediksi Kinerja Murid.” Jurnal Nasional Teknik Elektro dan Teknologi Informasi 10(2):131–38. doi: 10.22146/jnteti.v10i2.1417.

Nuralia, Siti, Harliana Harliana, and Tito Prabowo. 2023. “Implementasi Naïve Bayes Classifier Dalam Memprediksi Kelulusan Mahasiswa.” Journal Automation Computer Information System 3(1):63–72. doi: 10.47134/jacis.v3i1.57.

Oktafiani, Rian, Arief Hermawan, and Donny Avianto. 2023. “Pengaruh Komposisi Split Data Terhadap Performa Klasifikasi Penyakit Kanker Payudara Menggunakan Algoritma Machine Learning.” Jurnal Sains Dan Informatika 19–28. doi: 10.34128/jsi.v9i1.622.

R Habibah, Ummu, and Achmad Solichin. 2022. “Prediksi Kelulusan Mahasiswa Dengan Metode Naïve Bayes dan Artificial Neural Network: Studi Kasus Fakultas Teknik UNIS Tangerang.” Faktor Exacta 15(1):73~83. doi: 10.30998/faktorexacta.v15i1.11816.

Rolansa, Freska, Yunita Yunita, and Suheri Suheri. 2020. “Sistem prediksi dan evaluasi prestasi akademik mahasiswa di Program Studi Teknik Informatika menggunakan data mining.” Jurnal Pendidikan Informatika dan Sains 9(1):75. doi: 10.31571/saintek.v9i1.1696.

Santoso, Leo Willyanto, and Yulia Yulia. 2020. “Predicting Student Performance in Higher Education Using Multi-Regression Models.” TELKOMNIKA (Telecommunication Computing Electronics and Control) 18(3):1354. doi: 10.12928/telkomnika.v18i3.14802.

Suliztia, Mega Luna, and Achmad Fauzan. 2019. “Comparing Naive Bayes, K-Nearest Neighbor, And Neural Network Classification Methods Of Seat Load Factor In Lombok Outbound Flights.” Jurnal Matematika, Statistika dan Komputasi 16(2):187. doi: 10.20956/jmsk.v16i2.7864.

Suriani, Uci. 2023. “Penerapan Data Mining untuk Memprediksi Tingkat Kelulusan Mahasiswa Menggunakan Algoritma Decision Tree C4.5.” Journal of Computer and Information Systems Ampera 3(2). doi: 10.51519/journalcisa.v4i2.393.

Sutoyo, Edi, and Ahmad Almaarif. 2020. “Educational Data Mining untuk Prediksi Kelulusan Mahasiswa Menggunakan Algoritme Naïve Bayes Classifier.” JURNAL RESTI 4(1):95–101.

Valentinus, Fernando, Fabian Sujono, Ilham Ariansyah, and Dwi Ade Handayani Capah. 2023. “Implementation Of Data Mining With Classification And Forecasting Method Use Model Gaussian Naïve Bayes For Building Store (Studi Case: Tb Sinar Jaya).” Jurnal Teknik Informatika (Jutif) 4(2):413–20. doi: 10.52436/1.jutif.2023.4.2.701.

Wibowo Putra, Ari, Widiyono Widiyono, Anas Saifudin, Arief Darmawan Soma, and Eko Budihartono. 2022. “Naïve Bayes, Neural Network dan K-Nearest Neighbor untuk Klasifikasi Topik Tugas Akhir.” Smart Comp: Jurnalnya Orang Pintar Komputer 11(4). doi: 10.30591/smartcomp.v11i4.4251




DOI: http://dx.doi.org/10.31000/jika.v8i2.10752

Article Metrics

Abstract - 88 PDF - 73

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

 

CURRENT INDEXING