OPTIMALISASI ALGORITMA RANDOM FOREST FEATURE SELECTION DAN HYPERPARAMETER TUNING KLASIFIKASI GENRE MUSIK
Abstract
Full Text:
PDFReferences
Al-Tashi, Q., Abdulkadir, S. J., Rais, H. M., Mirjalili, S., & Alhussian, H. (2020). Approaches to Multi-Objective Feature Selection: A Systematic Literature Review. IEEE Access, 8, 125076–125096. https://doi.org/10.1109/ACCESS.2020.3007291
Avci, C., Budak, M., Yagmur, N., & Balcik, F. (2023). Comparison between random forest and support vector machine algorithms for LULC classification. International Journal of Engineering and Geosciences, 8(1), 1–10. https://doi.org/10.26833/ijeg.987605
Azmi, B. N., Hermawan, A., & Avianto, D. (2023). Analisis Pengaruh Komposisi Data Training dan Data Testing pada Penggunaan PCA dan Algoritma Decision Tree untuk Klasifikasi Penderita Penyakit Liver. JTIM : Jurnal Teknologi Informasi Dan Multimedia, 4(4), 281–290. https://doi.org/10.35746/jtim.v4i4.298
Belete, D. M., & Huchaiah, M. D. (2022). Grid search in hyperparameter optimization of machine learning models for prediction of HIV/AIDS test results. International Journal of Computers and Applications, 44(9), 875–886. https://doi.org/10.1080/1206212X.2021.1974663
Corbacioglu, Ş., & Aksel, G. (2023). Receiver operating characteristic curve analysis in diagnostic accuracy studies: A guide to interpreting the area under the curve value. Turkish Journal of Emergency Medicine, 23(4), 195. https://doi.org/10.4103/tjem.tjem_182_23
Ghosh, P., Mahapatra, S., Jana, S., & Kr. Jha, R. (2023). A Study on Music Genre Classification using Machine Learning. International Journal of Engineering Business and Social Science, 1(04), 308–320. https://doi.org/10.58451/ijebss.v1i04.55
Khan, F., Tarimer, I., Alwageed, H. S., Karadağ, B. C., Fayaz, M., Abdusalomov, A. B., & Cho, Y.-I. (2022). Effect of Feature Selection on the Accuracy of Music Popularity Classification Using Machine Learning Algorithms. Electronics, 11(21), 3518. https://doi.org/10.3390/electronics11213518
Matin, I. M. M. (2023). Hyperparameter Tuning Menggunakan GridsearchCV pada Random Forest untuk Deteksi Malware. MULTINETICS, 9(1), 43–50. https://doi.org/10.32722/multinetics.v9i1.5578
Ma, Z., Cui, S., & Joe, I. (2022). An Enhanced Proximal Policy Optimization-Based Reinforcement Learning Method with Random Forest for Hyperparameter Optimization. Applied Sciences, 12(14), 7006. https://doi.org/10.3390/app12147006
Navisa, S., Hakim, L., & Nabilah, A. (2021). Komparasi Algoritma Klasifikasi Genre Musik pada Spotify Menggunakan CRISP-DM. Jurnal Sistem Cerdas, 4(2), 114–125. https://doi.org/10.37396/jsc.v4i2.162
Nivethithaa, K. K., & Vijayalakshmi, S. (2021). Survey on Data Mining Techniques, Process and Algorithms. Journal of Physics: Conference Series, 1947(1), 012052. https://doi.org/10.1088/1742-6596/1947/1/012052
Setiadi, D. R. I. M., Rahardwika, D. S., Rachmawanto, E. H., Sari, C. A., Susanto, A., Mulyono, I. U. W., Astuti, E. Z., & Fahmi, A. (2020). Effect of Feature Selection on The Accuracy of Music Genre Classification using SVM Classifier. 2020 International Seminar on Application for Technology of Information and Communication (ISemantic), 7–11. https://doi.org/10.1109/iSemantic50169.2020.9234222
Singhal, R., Srivatsan, S., & Panda, P. (2022). Classification of Music Genres using Feature Selection and Hyperparameter Tuning. Journal of Artificial Intelligence and Capsule Networks, 4(3), 167–178. https://doi.org/10.36548/jaicn.2022.3.003
Tanujaya, L. B. C., Susanto, B., & Saragih, A. (2020). The Comparison of Logistic Regression Methods and Random Forest for Spotify Audio Mode Featurre Classification. Indonesian Journal of Data and Science, 1(3). https://doi.org/10.33096/ijodas.v1i3.16
We Are Social. (2022). Presentase Pengguna Streaming Musik Di Indonesia. Https://Dataindonesia.Id/Internet/Detail/503-Warga-Ri-Gunakan-Streaming-Musik-Pada-Kuartal-Iii2022.
Yang, Z., Xu, Q., Bao, S., Cao, X., & Huang, Q. (2022). Learning With Multiclass AUC: Theory and Algorithms. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44(11), 7747–7763. https://doi.org/10.1109/TPAMI.2021.3101125
DOI: http://dx.doi.org/10.31000/jika.v9i1.12216
Article Metrics
Abstract - 1136 PDF - 1186Refbacks
- There are currently no refbacks.

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
INDEX BY :
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |