ENHANCING SOLAR ENERGY EFFICIENCY: PREDICTIVE MODELING WITH XGBOOST AND LINEAR REGRESSION
Abstract
References
Aini, N., Hastomo, W., & Yulika Go, R. (2023). Prediction of Anthropogenic Greenhouse Gas Emissions via Manure Management in Indonesia and Alternative Policies for Indonesian Livestock Development. Journal of Renewable Energy and Environment, 10(3), 99–106. https://doi.org/10.30501/jree.2022.354796.1423
Al-Shahri, O. A., Ismail, F. B., Hannan, M. A., Lipu, M. S. H., Al-Shetwi, A. Q., Begum, R. A., Al-Muhsen, N. F. O., & Soujeri, E. (2021). Solar photovoltaic energy optimization methods, challenges and issues: A comprehensive review. Journal of Cleaner Production, 284, 125465. https://doi.org/https://doi.org/10.1016/j.jclepro.2020.125465
Antonanzas, J., Osorio, N., Escobar, R., Urraca, R., Martinez-de-Pison, F. J., & Antonanzas-Torres, F. (2016). Review of photovoltaic power forecasting. Solar Energy, 136, 78–111. https://doi.org/https://doi.org/10.1016/j.solener.2016.06.069
Asselman, A., Khaldi, M., & Aammou, S. (2023). Enhancing the prediction of student performance based on the machine learning XGBoost algorithm. Interactive Learning Environments, 31(6), 3360–3379. https://doi.org/10.1080/10494820.2021.1928235
Assi, A. F., Zhakanova Isiksal, A., & Tursoy, T. (2021). Renewable energy consumption, financial development, environmental pollution, and innovations in the ASEAN + 3 group: Evidence from (P-ARDL) model. Renewable Energy, 165, 689–700. https://doi.org/https://doi.org/10.1016/j.renene.2020.11.052
Beaudin, M., Zareipour, H., Schellenberglabe, A., & Rosehart, W. (2010). Energy storage for mitigating the variability of renewable electricity sources: An updated review. Energy for Sustainable Development, 14(4), 302–314. https://doi.org/https://doi.org/10.1016/j.esd.2010.09.007
Bhallamudi, R., Kumarasamy, S., & Sundarabalan, C. K. (2021). Effect of dust and shadow on performance of solar photovoltaic modules: Experimental analysis. Energy Engineering: Journal of the Association of Energy Engineering, 118(6), 1827–1838. https://doi.org/10.32604/EE.2021.016798
Chen, T., & Guestrin, C. (2016). XGBoost: A Scalable Tree Boosting System. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 785–794. https://doi.org/10.1145/2939672.2939785
Denholm, P., & Hand, M. (2011). Grid flexibility and storage required to achieve very high penetration of variable renewable electricity. Energy Policy, 39(3), 1817–1830. https://doi.org/https://doi.org/10.1016/j.enpol.2011.01.019
Hastomo, W. (2020). Gesture Recognition For Pencak Silat Tapak Suci Real-Time Animation. Journal of Computer Science and Information, 2(13), 91–102. https://doi.org/http://dx:doi:org/10:21609/jiki:v13i2.855
Hastomo, W., Aini, N., Karno, A. S. B., & ... (2022). Machine Learning Methods for Predicting Manure Management Emissions. Jurnal …, 11(2), 131–139. http://download.garuda.kemdikbud.go.id/article.php?article=2807435&val=24806&title=Metode Pembelajaran Mesin untuk Memprediksi Emisi Manure Management
Hastomo, W., Bayangkari Karno, A. S., Kalbuana, N., Meiriki, A., & Sutarno. (2021). Characteristic Parameters of Epoch Deep Learning to Predict Covid-19 Data in Indonesia. Journal of Physics: Conference Series, 1933(1). https://doi.org/10.1088/1742-6596/1933/1/012050
Hepbasli, A., & Alsuhaibani, Z. (2011). A key review on present status and future directions of solar energy studies and applications in Saudi Arabia. Renewable and Sustainable Energy Reviews, 15(9), 5021–5050. https://doi.org/https://doi.org/10.1016/j.rser.2011.07.052
Karno, A. S. B., Hastomo, W., Surawan, T., Lamandasa, S. R., Usuli, S., Kapuy, H. R., & Digdoyo, A. (2023). Classification of cervical spine fractures using 8 variants EfficientNet with transfer learning. International Journal of Electrical and Computer Engineering, 13(6), 7065–7077. https://doi.org/10.11591/ijece.v13i6.pp7065-7077
Kinaneva, D., Hristov, G., Kyuchukov, P., Georgiev, G., Zahariev, P., & Daskalov, R. (2021). Machine Learning Algorithms for Regression Analysis and Predictions of Numerical Data. 2021 3rd International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA), 1–6. https://doi.org/10.1109/HORA52670.2021.9461298
Lund, H., Østergaard, P. A., Connolly, D., Ridjan, I., Mathiesen, B. V., Hvelplund, F., Thellufsen, J. Z., & Sorknæs, P. (2016). Energy Storage and Smart Energy Systems. International Journal of Sustainable Energy Planning and Management, 11(0 SE-Articles), 3–14. https://doi.org/10.5278/ijsepm.2016.11.2
Renewables, I. E. A. (2021). Analysis and Forecast to 2026. International Energy Agency: Paris, France. https://www.iea.org/reports/renewables-2021
Saha, S., Saleem, M. I., & Roy, T. K. (2023). Impact of high penetration of renewable energy sources on grid frequency behaviour. International Journal of Electrical Power & Energy Systems, 145, 108701. https://doi.org/https://doi.org/10.1016/j.ijepes.2022.108701
Sampaio, P. G. V., & González, M. O. A. (2017). Photovoltaic solar energy: Conceptual framework. Renewable and Sustainable Energy Reviews, 74, 590–601. https://doi.org/https://doi.org/10.1016/j.rser.2017.02.081
Shah, R., Mithulananthan, N., Bansal, R. C., & Ramachandaramurthy, V. K. (2015). A review of key power system stability challenges for large-scale PV integration. Renewable and Sustainable Energy Reviews, 41, 1423–1436. https://doi.org/https://doi.org/10.1016/j.rser.2014.09.027
Shehadeh, A., Alshboul, O., Al Mamlook, R. E., & Hamedat, O. (2021). Machine learning models for predicting the residual value of heavy construction equipment: An evaluation of modified decision tree, LightGBM, and XGBoost regression. Automation in Construction, 129, 103827. https://doi.org/https://doi.org/10.1016/j.autcon.2021.103827
Tyagi, V. V, Rahim, N. A. A., Rahim, N. A., & Selvaraj, J. A. /L. (2013). Progress in solar PV technology: Research and achievement. Renewable and Sustainable Energy Reviews, 20, 443–461. https://doi.org/https://doi.org/10.1016/j.rser.2012.09.028
Yang, Y., Xia, S., Huang, P., & Qian, J. (2024). Energy transition: Connotations, mechanisms and effects. Energy Strategy Reviews, 52, 101320.
DOI: http://dx.doi.org/10.31000/jika.v9i1.12713
Article Metrics
Abstract - 643 PDF - 349 PDF - 193Refbacks
- There are currently no refbacks.

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
INDEX BY :
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |