ENHANCING SOLAR ENERGY EFFICIENCY: PREDICTIVE MODELING WITH XGBOOST AND LINEAR REGRESSION

Widi Hastomo, Aji Digdoyo, Adhitio Satyo Bayangkari Karno, Dodi Arif

Abstract


Abstract Improving the reliability of the power grid system and operational efficiency is essential to facing future energy challenges. This study aims to provide added value to the management of the power grid, especially solar photovoltaic power plants (PLTS), by developing a more accurate predictive model for estimating energy output. By utilizing two real-time data sets, namely weather data and PLTS data, as well as machine learning methods, this study compares the performance of the XGBoost and Linear Regression (LR) models. We built the model to overcome high variability in energy output and maintain the stability of the power grid. The results show that XGBoost has a better performance with an MAE value of 38.08 compared to linear regression, which has an MAE of 80.23, indicating the superiority of XGBoost in predicting PLTS energy output. This study also opens up opportunities for further research with a focus on the application of other models such as random forests and neural networks, as well as improving data quality and parameter optimization to further improve prediction reliability and operational efficiency. The best-performing XGBoost model enables more efficient energy utilization and enhances the operational efficiency of PV solar power plants.

Full Text:

PDF PDF

References


Aini, N., Hastomo, W., & Yulika Go, R. (2023). Prediction of Anthropogenic Greenhouse Gas Emissions via Manure Management in Indonesia and Alternative Policies for Indonesian Livestock Development. Journal of Renewable Energy and Environment, 10(3), 99–106. https://doi.org/10.30501/jree.2022.354796.1423

Al-Shahri, O. A., Ismail, F. B., Hannan, M. A., Lipu, M. S. H., Al-Shetwi, A. Q., Begum, R. A., Al-Muhsen, N. F. O., & Soujeri, E. (2021). Solar photovoltaic energy optimization methods, challenges and issues: A comprehensive review. Journal of Cleaner Production, 284, 125465. https://doi.org/https://doi.org/10.1016/j.jclepro.2020.125465

Antonanzas, J., Osorio, N., Escobar, R., Urraca, R., Martinez-de-Pison, F. J., & Antonanzas-Torres, F. (2016). Review of photovoltaic power forecasting. Solar Energy, 136, 78–111. https://doi.org/https://doi.org/10.1016/j.solener.2016.06.069

Asselman, A., Khaldi, M., & Aammou, S. (2023). Enhancing the prediction of student performance based on the machine learning XGBoost algorithm. Interactive Learning Environments, 31(6), 3360–3379. https://doi.org/10.1080/10494820.2021.1928235

Assi, A. F., Zhakanova Isiksal, A., & Tursoy, T. (2021). Renewable energy consumption, financial development, environmental pollution, and innovations in the ASEAN + 3 group: Evidence from (P-ARDL) model. Renewable Energy, 165, 689–700. https://doi.org/https://doi.org/10.1016/j.renene.2020.11.052

Beaudin, M., Zareipour, H., Schellenberglabe, A., & Rosehart, W. (2010). Energy storage for mitigating the variability of renewable electricity sources: An updated review. Energy for Sustainable Development, 14(4), 302–314. https://doi.org/https://doi.org/10.1016/j.esd.2010.09.007

Bhallamudi, R., Kumarasamy, S., & Sundarabalan, C. K. (2021). Effect of dust and shadow on performance of solar photovoltaic modules: Experimental analysis. Energy Engineering: Journal of the Association of Energy Engineering, 118(6), 1827–1838. https://doi.org/10.32604/EE.2021.016798

Chen, T., & Guestrin, C. (2016). XGBoost: A Scalable Tree Boosting System. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 785–794. https://doi.org/10.1145/2939672.2939785

Denholm, P., & Hand, M. (2011). Grid flexibility and storage required to achieve very high penetration of variable renewable electricity. Energy Policy, 39(3), 1817–1830. https://doi.org/https://doi.org/10.1016/j.enpol.2011.01.019

Hastomo, W. (2020). Gesture Recognition For Pencak Silat Tapak Suci Real-Time Animation. Journal of Computer Science and Information, 2(13), 91–102. https://doi.org/http://dx:doi:org/10:21609/jiki:v13i2.855

Hastomo, W., Aini, N., Karno, A. S. B., & ... (2022). Machine Learning Methods for Predicting Manure Management Emissions. Jurnal …, 11(2), 131–139. http://download.garuda.kemdikbud.go.id/article.php?article=2807435&val=24806&title=Metode Pembelajaran Mesin untuk Memprediksi Emisi Manure Management

Hastomo, W., Bayangkari Karno, A. S., Kalbuana, N., Meiriki, A., & Sutarno. (2021). Characteristic Parameters of Epoch Deep Learning to Predict Covid-19 Data in Indonesia. Journal of Physics: Conference Series, 1933(1). https://doi.org/10.1088/1742-6596/1933/1/012050

Hepbasli, A., & Alsuhaibani, Z. (2011). A key review on present status and future directions of solar energy studies and applications in Saudi Arabia. Renewable and Sustainable Energy Reviews, 15(9), 5021–5050. https://doi.org/https://doi.org/10.1016/j.rser.2011.07.052

Karno, A. S. B., Hastomo, W., Surawan, T., Lamandasa, S. R., Usuli, S., Kapuy, H. R., & Digdoyo, A. (2023). Classification of cervical spine fractures using 8 variants EfficientNet with transfer learning. International Journal of Electrical and Computer Engineering, 13(6), 7065–7077. https://doi.org/10.11591/ijece.v13i6.pp7065-7077

Kinaneva, D., Hristov, G., Kyuchukov, P., Georgiev, G., Zahariev, P., & Daskalov, R. (2021). Machine Learning Algorithms for Regression Analysis and Predictions of Numerical Data. 2021 3rd International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA), 1–6. https://doi.org/10.1109/HORA52670.2021.9461298

Lund, H., Østergaard, P. A., Connolly, D., Ridjan, I., Mathiesen, B. V., Hvelplund, F., Thellufsen, J. Z., & Sorknæs, P. (2016). Energy Storage and Smart Energy Systems. International Journal of Sustainable Energy Planning and Management, 11(0 SE-Articles), 3–14. https://doi.org/10.5278/ijsepm.2016.11.2

Renewables, I. E. A. (2021). Analysis and Forecast to 2026. International Energy Agency: Paris, France. https://www.iea.org/reports/renewables-2021

Saha, S., Saleem, M. I., & Roy, T. K. (2023). Impact of high penetration of renewable energy sources on grid frequency behaviour. International Journal of Electrical Power & Energy Systems, 145, 108701. https://doi.org/https://doi.org/10.1016/j.ijepes.2022.108701

Sampaio, P. G. V., & González, M. O. A. (2017). Photovoltaic solar energy: Conceptual framework. Renewable and Sustainable Energy Reviews, 74, 590–601. https://doi.org/https://doi.org/10.1016/j.rser.2017.02.081

Shah, R., Mithulananthan, N., Bansal, R. C., & Ramachandaramurthy, V. K. (2015). A review of key power system stability challenges for large-scale PV integration. Renewable and Sustainable Energy Reviews, 41, 1423–1436. https://doi.org/https://doi.org/10.1016/j.rser.2014.09.027

Shehadeh, A., Alshboul, O., Al Mamlook, R. E., & Hamedat, O. (2021). Machine learning models for predicting the residual value of heavy construction equipment: An evaluation of modified decision tree, LightGBM, and XGBoost regression. Automation in Construction, 129, 103827. https://doi.org/https://doi.org/10.1016/j.autcon.2021.103827

Tyagi, V. V, Rahim, N. A. A., Rahim, N. A., & Selvaraj, J. A. /L. (2013). Progress in solar PV technology: Research and achievement. Renewable and Sustainable Energy Reviews, 20, 443–461. https://doi.org/https://doi.org/10.1016/j.rser.2012.09.028

Yang, Y., Xia, S., Huang, P., & Qian, J. (2024). Energy transition: Connotations, mechanisms and effects. Energy Strategy Reviews, 52, 101320.




DOI: http://dx.doi.org/10.31000/jika.v9i1.12713

Article Metrics

Abstract - 643 PDF - 349 PDF - 193

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

INDEX BY :