ANALISIS SENTIMEN APLIKASI BISA EKSPOR PADA ULASAN PENGGUNA DI GOOGLE PLAY DENGAN NAÏVE BAYES
Abstract
Full Text:
PDFReferences
Abraham, A., Gupta, B. K., Maurya, A. S., Verma, S. B., Husain, M., Ali, A., Alshmrany, S., & Gupta, S. (2024). Naïve Bayes Approach for Word Sense Disambiguation System with a Focus on Parts-of-Speech Ambiguity Resolution. IEEE Access, 12(September), 126668–126678. https://doi.org/10.1109/ACCESS.2024.3453912
Al-Ghuribi, S. M., Mohd Noah, S. A., & Tiun, S. (2020). Unsupervised Semantic Approach of Aspect-Based Sentiment Analysis for Large-Scale User Reviews. IEEE Access, 8, 218592–218613. https://doi.org/10.1109/ACCESS.2020.3042312
Ali, S., Wang, G., & Riaz, S. (2020). Aspect based sentiment analysis of ridesharing platform reviews for kansei engineering. IEEE Access, 8, 173186–173196. https://doi.org/10.1109/ACCESS.2020.3025823
Chehal, D., Gupta, P., & Gulati, P. (2022). Evaluating Annotated Dataset of Customer Reviews for Aspect Based Sentiment Analysis. Journal of Web Engineering, 21(2), 145–178. https://doi.org/10.13052/jwe1540-9589.2122
Fitriyani, F., & Arifin, T. (2020). Penerapan Word N-Gram Untuk Sentiment Analysis Review Menggunakan Metode Support Vector Machine (Studi Kasus: Aplikasi Sambara). Sistemasi, 9(3), 610. https://doi.org/10.32520/stmsi.v9i3.954
Fransisco, V., & Rarasati, D. B. (2024). Analisis Sentimen Aplikasi Polri Super App Menggunakan Algoritma Random Forest. Jurnal Ilmiah Sains Dan Teknologi, 8(2), 183–195. https://doi.org/10.47080/saintek.v8i2.3383
He, H., Zhou, G., & Zhao, S. (2022). Exploring E-Commerce Product Experience Based on Fusion Sentiment Analysis Method. IEEE Access, 10(August), 110248–110260. https://doi.org/10.1109/ACCESS.2022.3214752
Insan, M. K., Hayati, U., & Nurdiawan, O. (2023). Analisis Sentimen Aplikasi Brimo Pada Ulasan Pengguna Di. Jurnal Mahasiswa Teknik Informatika, 7(1), 478–483.
Kim, C. G., Hwang, Y. J., & Kamyod, C. (2022). A Study of Profanity Effect in Sentiment Analysis on Natural Language Processing Using ANN. Journal of Web Engineering, 21(3), 751–766. https://doi.org/10.13052/jwe1540-9589.2139
Li, Z., Li, R., & Jin, G. (2020). Sentiment analysis of danmaku videos based on naïve bayes and sentiment dictionary. IEEE Access, 8, 75073–75084. https://doi.org/10.1109/ACCESS.2020.2986582
Maitama, J. Z., Idris, N., Abdi, A., Shuib, L., & Fauzi, R. (2020). A systematic review on implicit and explicit aspect extraction in sentiment analysis. IEEE Access, 8, 194166–194191. https://doi.org/10.1109/ACCESS.2020.3031217
Mughal, N., Mujtaba, G., Shaikh, S., Kumar, A., & Daudpota, S. M. (2024). Comparative Analysis of Deep Natural Networks and Large Language Models for Aspect-Based Sentiment Analysis. IEEE Access, 12(May), 60943–60959. https://doi.org/10.1109/ACCESS.2024.3386969
Saputra, S. A., Rahmatullah, B., & ... (2022). Sentiment Analysis User Ajaib Application Using Naïve Bayes Algorithm. JISICOM (Journal of …, 6(2), 497–505. https://doi.org/10.52362/jisicom.v6i2.964
Tuo, H. (2024). Online Evaluation Information Cascade and Its Impact on Consumer Decision Making: Analyzing Movie Reviews Using Sentiment Corpus. IEEE Access, 12(March), 54650–54660. https://doi.org/10.1109/ACCESS.2024.3389985
Zhou, Y., & Yang, S. (2019). Roles of Review Numerical and Textual Characteristics on Review Helpfulness Across Three Different Types of Reviews. IEEE Access, 7, 27769–27780. https://doi.org/10.1109/ACCESS.2019.2901472
DOI: http://dx.doi.org/10.31000/jika.v9i1.12876
Article Metrics
Abstract - 670 PDF - 1096Refbacks
- There are currently no refbacks.

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
INDEX BY :
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |