SENTIMENT ANALYSIS PUBLIC OPINION OF CFW (CITAYAM FASHION WEEK) ON SOCIAL MEDIA TWITTER USING NAÏVE BAYES CLASSIFIER
Abstract
Full Text:
PDFReferences
Alam, M. F., Singh, R., & Katiyar, S. (2021). Customer Segmentation Using K-Means Clustering in Unsupervised Machine Learning. In Proceedings - 2021 3rd International Conference on Advances in Computing, Communication Control and Networking, ICAC3N 2021 (pp. 94–98). https://doi.org/10.1109/ICAC3N53548.2021.9725644
Destitus, C., Wella, W., & Suryasari, S. (2020). Support Vector Machine VS Information Gain: Analisis Sentimen Cyberbullying di Twitter Indonesia. Ultima InfoSys : Jurnal Ilmu Sistem Informasi, 11(2), 107–111. https://doi.org/10.31937/si.v11i2.1740
Fairuz, A. L., Ramadhani, R. D., & Tanjung, N. A. F. (2021). Analisis Sentimen Masyarakat Terhadap COVID-19 Pada Media Sosial Twitter. Journal of Dinda : Data Science, Information Technology, and Data Analytics, 1(1), 42–51. https://doi.org/10.20895/dinda.v1i1.180
Fashion, C., Fenomena, W., Ekonomi, P., Fashion, C., Fenomena, W., Ekonomi, P., & Pemerintah, K. (2022). Jurnal Mimbar Muamalah. August, 8–18.
Fauzi, M. A., & Adinugroho, S. (2018). Analisis Sentimen Pariwisata di Kota Malang Menggunakan Metode Naive Bayes dan Seleksi Fitur Query Expansion Ranking Optimasi Sisa Bahan Baku Pada Industri Mebel Menggunakan Algoritma Genetika View project Automatic Essay Scoring View project. August.
Lestari, A. R. T., Perdana, R. S., & Fauzi, M. A. (2017). Analisis Sentimen Tentang Opini Pilkada DKI 2017 Pada Dokumen Twitter Berbahasa Indonesia Menggunakan Näive Bayes dan Pembobotan Emoji. Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer, 1(12), 1718–1724.
Maddumala, V. R., Chaikam, H., Velanati, J. S., Ponnaganti, R., & Enuguri, B. (2022). Customer Segmentation using Machine Learning in Python. In 7th International Conference on Communication and Electronics Systems, ICCES 2022 - Proceedings (pp. 1268–1273). https://doi.org/10.1109/ICCES54183.2022.9836018
Patil, R. S., & Kolhe, S. R. (2021). Resource Creation for Sentiment Analysis of Under-Resourced Language: Marathi. In Communications in Computer and Information Science (Vol. 1380, pp. 445–457). https://doi.org/10.1007/978-981-16-0507-9_37
Permana, A. A., Fahrezi, M. F., Kristiyanti, D. A., & Sihotang, M. (2021). Sentimen Analisis Opini Masyarakat Pada Media Sosial Twitter Terhadap Vaksin Berbayar Menggunakan Metode Naïve Bayes Classifier (Nbc). Jurnal Teknik, 10(2), 113–121. https://doi.org/10.31000/jt.v10i2.5471
Singh, K. N., Dorendro, A., Devi, H. M., & Mahanta, A. K. (2021). Analysis of Changing Trends in Textual Data Representation. In Communications in Computer and Information Science (Vol. 1380, pp. 237–251). https://doi.org/10.1007/978-981-16-0507-9_21
Steven, C., & Wella, W. (2020). The Right Sentiment Analysis Method of Indonesian Tourism in Social Media Twitter. IJNMT (International Journal of New Media Technology), 7(2), 102–110. https://doi.org/10.31937/ijnmt.v7i2.1732
Syadid, F. (2019). Analisis Sentimen Komentar Netizen Terhadap Calon Presiden Indonesia 2019 Dari Twitter Menggunakan Algoritma Term Frequency-Invers Document Frequency (Tf- Idf) Dan Metode Multi Layer Perceptron (Mlp) Neural Network. Skripsi Universitas Islam Negeri Syarif Hidayatullah Jakarta, 1–89.
Syakuro, A. (2017). Pada Media Sosial Menggunakan Metode Naïve Bayes Classifier ( NBC ) Dengan Seleksi Fitur Information Gain ( IG ) Halaman Judul Skripsi Oleh : Abdan Syakuro. Analisis Sentimen Masyarakat Terhadap E-Commerce Pada Media Sosial Menggunakan Metode Naive Bayes Classifier (NBC) Dengan Seleksi Fitur Information Gain (IG), 1–89.
Zuhdi, A. M., Utami, E., & Raharjo, S. (2019). Analisis sentiment twitter terhadap capres Indonesia 2019 dengan metode K-NN. Jurnal Informa Politeknik Indonusa Surakarta, 5, 1–7.
Zulfa, I., & Winarko, E. (2017). Sentimen Analisis Tweet Berbahasa Indonesia Dengan Deep Belief Network. IJCCS (Indonesian Journal of Computing and Cybernetics Systems), 11(2), 187. https://doi.org/10.22146/ijccs.24716
DOI: http://dx.doi.org/10.31000/jika.v7i1.7410
Article Metrics
Abstract - 328 PDF - 254Refbacks
- There are currently no refbacks.

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
CURRENT INDEXING
![]() |
![]() |
![]() |
|
![]() |
![]() |
||
![]() |
![]() |