Perbandingan Metode Klasifikasi Machine Learning: Studi Kasus Prediksi Jenis Litologi Berdasarkan Data Well Log Pada Formasi Sleipner, North Sea
Abstract
Keywords
Full Text:
PDFReferences
Bhattacharya, S. (2021). A primer on machine learning in subsurface geoscience. PGE. Switzerland: Springer.
Cholissodin, I., Sutrisno., Subroto, A.A., Hasanah, U., dan Febiola, Y.I. (2020). AI machine learning & deep learning. Filkom. Malang: Universitas Brawijaya.
Folkestad, A., dan Satur, N. (2008). Regressive and transgressive cycles in a rift-basin: Depositional model and sedimentary partitioning of the middle jurassic Hugin Formation, Southern Viking Graben, North Sea. Sedimentary Geology. Norway: Elsevier. hal. 1-21.
Horrocks, T., Holden, E.J., dan Wedge, D. (2015). Evaluation of automated lithology classification architectures using highly-sampled wireline logs for coal exploration. CG, 83. Australia: Elsevier. hal. 209-218.
Kurniadi, F.I., Rohmana, R.C., dan Taufani, L. (2023). Local mean imputation for handling missing value to provide more accurate facies classification. Procedia Computer Science. 1. hal. 301-309.
Kurniadi, F.I., dan Rohmana, R.C. (2023). Enhancing lithology classification performance through random forest, COPOD, and bayesian optimization. ICISS. IEEE. hal. 1-5.
Kaspersen, H.M. (2016). Reservoir characterization of jurassic sandstones of the Johan Sverdrup field, Central North Sea. Master Thesis. Oslo: Departmen of Geoscience. University of Oslo.
Khomsah, S., dan Ariwibowo, A.S. (2020). Model text-preprocessing komentar youtube dalam bahasa Indonesia. RESTI. vol. 4. no. 4. Sumatera Barat: IAII. hal. 648-654.
Lutz, M. (2013). Learning python: powerful object-oriented programming. United States of America. Canada: O’Reilly.
Mahesh, B. (2020). Machine lerning algorithm – A review. CE. Vol. 9 (1). India: IJSR. hal. 381-386.
Mohamed, I.M., Mohamed, S., Mazher, I., dan Chester, P. (2019). Formation lithology classification: insights into machine learning methods. Canada: SPE.
Pandey, Y.N., Rastogi, A., Kainkaryam, S., Bhattacharya, S., dan Saputelli, L. (2020). Machine learning in the oil and gas industry. California: Apress.
Ravasi, M., Vasconcelos, I., Curtis, A., dan Kritski, A. (2015). Vector-acoustic reverse time migration of volve ocean-bottom cable data set without up/down decomposed wavefields. Geophysics. vol. 80. no. 4. Norway: SEG. hal. 137-150.
Statoil. (1998). Final Well Report, North Sea. Norway: Statoil.
Salehi, S.M., dan Honarvar, B. (2014). Automatic identification of formation iithology from well log data: a machine learning approach. JPSR. vol. 3 (2). Iran: Science and Engineering. hal. 73-82.
Sen, S., dan Ganguli, S.S. (2019). Estimation of pore pressure and fracture gradient in volve field, Norwegian North Sea. Mumbai. India: SPE.
Thomas, B.M., Pedersen, P.M., Whitaker, M.F., dan Shaw, N.D. (1984). Organic facies and hydrocarbon distributions in the Norwegian North Sea. PGSE. Springer. Stavanger: Graham & Trotman. hal. 3-26.
Vollset, J., dan Dore, A.G. (1984). A revised triasic and jurassic lithostratigraphic nomenclature for the Norwegian North Sea. NPD-Buletin no 3. Norway: Oljedirektoratet.
Xie, Y., Zhu, C., Zhou, W., Li, Z., Liu, X., dan Tu, M. (2018). Evaluation of machine learning methods for formation lithology identification: A comparison of tuning processes and model performances. JPSE. Chengdu: Elsevier. hal. 182-193.
DOI: http://dx.doi.org/10.31000/jt.v13i2.10882
Article Metrics
Abstract - 333 PDF - 260Refbacks
- There are currently no refbacks.
License URL: https://scholar.google.co.id/citations?user=RJRfBN0AAAAJ&hl=id&authuser=2