Peningkatan Performa Termal Dengan Menggunakan Vortex Generators Didalam Saluran Persegi Panjang

Yafid Effendi, Ali Rosyidin, Bambang Setiawan

Abstract


Vortex generators (VGs) are an effective method for improving the thermal performance of heat exchangers. This study aims to optimize the heat transfer rate by employing VGs, where airflow passes over a heated cylinder within a rectangular duct equipped with vortex generators. An experimental approach was conducted to investigate the enhancement of heat transfer using concave delta winglet (CDW) and delta winglet (DW) VGs, compared to the baseline condition without VGs. The experiments involved variations in the angle of attack (β) at 10°, one VG pairs, and the arrangement types (in-line and staggered). The cylinder was heated with a constant power of 35 W, reaching a surface temperature of 38 °C, and airflow velocities ranged from 0.4 to 2 m/s. Temperature measurements were taken at the inlet, outlet, and cylinder surface using thermocouples. The research results indicate a significant enhancement in the convective heat transfer coefficient when using vortex generators (VGs). Among the various configurations tested, the staggered concave delta winglet pair (CDW) arrangement demonstrated the highest values in terms of convective heat transfer coefficient, friction factor ratio, and performance evaluation criterion (PEC), followed by the in-line CDW, staggered delta winglet pair (DW), and in-line DW configurations. The highest convective heat transfer coefficient was observed in the staggered CDW configuration, reaching 16.02%. The friction factor ratio (f/fo) for this configuration was 108.67%. The highest PEC value, 26.34%, was achieved with a single staggered CDW pair at a Reynolds number of Re = 11,000.

Full Text:

PDF

References


Aslam Bhutta, M. M., Hayat, N., Bashir, M. H., Khan, A. R., Ahmad, K. N., & Khan, S. (2012). CFD applications in various heat exchangers design: A review. Applied Thermal Engineering, 32(1), 1–12. https://doi.org/10.1016/j.applthermaleng.2011.09.001

Awais, M., & Bhuiyan, A. A. (2018). Heat transfer enhancement using different types of vortex generators (VGs): a review on experimental and numerical activities. Thermal Science and Engineering Progress, 5(March 2018), 524–545. https://doi.org/10.1016/j.tsep.2018.02.007

Biswas, G., Torii, K., Fujii, D., & Nishino, K. (1996). Numerical and experimental determination of flow structure and heat transfer effects of longitudinal vortices in a channel flow. International Journal of Heat and Mass Transfer, 39(16), 3441–3451. https://doi.org/10.1016/0017-9310(95)00398-3

Biswas, Gautam, Chattopadhyay, H., & Sinha, A. (2012). Augmentation of heat transfer by creation of streamwise longitudinal vortices using vortex generators. Heat Transfer Engineering, 33(4–5), 406–424. https://doi.org/10.1080/01457632.2012.614150

Dong, J., Su, L., Chen, Q., & Xu, W. (2013). Experimental study on thermal-hydraulic performance of a wavy fin-and-flat tube aluminum heat exchanger. Applied Thermal Engineering, 51(1–2), 32–39. https://doi.org/10.1016/j.applthermaleng.2012.09.018

Effendi, Y., Prayogo, A., Syaiful, Djaeni, M., & Yohana, E. (2021). Effect of perforated concave delta winglet vortex generators on heat transfer and flow resistance through the heated tubes in the channel. Experimental Heat Transfer, 1–24. https://doi.org/10.1080/08916152.2021.1919245

Effendi, Y., Taufiq, R., & Pratama, D. (2024). Studi Eksperimental Peningkatan Perpindahan Panas dengan Menggunakan Perforated Concave Delta Winglet Vortex Generators. 13(02), 300–307.

Ermagan, H., & Rafee, R. (2018). Numerical investigation into the thermo-fluid performance of wavy microchannels with superhydrophobic walls. International Journal of Thermal Sciences, 132(June), 578–588. https://doi.org/10.1016/j.ijthermalsci.2018.06.035

Gherasim, I., Galanis, N., & Nguyen, C. T. (2011). Heat transfer and fluid flow in a plate heat exchanger. Part II: Assessment of laminar and two-equation turbulent models. International Journal of Thermal Sciences, 50(8), 1499–1511. https://doi.org/10.1016/j.ijthermalsci.2011.03.017

Hosseinirad, E., Khoshvaght-Aliabadi, M., & Hormozi, F. (2019). Evaluation of heat transfer and pressure drop in a mini-channel using transverse rectangular vortex-generators with various non-uniform heights. Applied Thermal Engineering, 161(June), 114196. https://doi.org/10.1016/j.applthermaleng.2019.114196

Huang, C. H., & Chiang, P. C. (2016). An inverse study to design the optimal shape and position for delta winglet vortex generators of pin-fin heat sinks. International Journal of Thermal Sciences, 109, 374–385. https://doi.org/10.1016/j.ijthermalsci.2016.06.018

Jacobi, A. M., & Shah, R. K. (1995). Heat transfer surface enhancement through the use of longitudinal vortices: A review of recent progress. Experimental Thermal and Fluid Science, 11(3), 295–309. https://doi.org/10.1016/0894-1777(95)00066-U

Khoshvaght-Aliabadi, M., Hormozi, F., & Zamzamian, A. (2014). Role of channel shape on performance of plate-fin heat exchangers: Experimental assessment. International Journal of Thermal Sciences, 79, 183–193. https://doi.org/10.1016/j.ijthermalsci.2014.01.004

Lin, L., Zhao, J., Lu, G., Wang, X. D., & Yan, W. M. (2017). Heat transfer enhancement in microchannel heat sink by wavy channel with changing wavelength/amplitude. International Journal of Thermal Sciences, 118, 423–434. https://doi.org/10.1016/j.ijthermalsci.2017.05.013

Liu, Y., Ma, X., Ye, X., Chen, Y., Cheng, Y., & Lan, Z. (2019). Heat transfer enhancement of annular finned tube exchanger using vortex generators: The effect of oriented functional circumferential arrangement. Thermal Science and Engineering Progress, 10(April 2018), 27–35. https://doi.org/10.1016/j.tsep.2018.12.010

Lotfi, B., Sundén, B., & Wang, Q. (2016). An investigation of the thermo-hydraulic performance of the smooth wavy fin-and-elliptical tube heat exchangers utilizing new type vortex generators. Applied Energy, 162, 1282–1302. https://doi.org/10.1016/j.apenergy.2015.07.065

Malatesta, V., Souza, L. F., Liu, J. T. C., & Kloker, M. J. (2015). Heat Transfer Analysis in a Flow over Concave Wall with Primary and Secondary Instabilities. Procedia IUTAM, 14, 487–495. https://doi.org/10.1016/j.piutam.2015.03.077

Song, K. W., Tagawa, T., Chen, Z. H., & Zhang, Q. (2019). Heat transfer characteristics of concave and convex curved vortex generators in the channel of plate heat exchanger under laminar flow. International Journal of Thermal Sciences, 137(October 2018), 215–228. https://doi.org/10.1016/j.ijthermalsci.2018.11.002

Syaiful, Ayutasari, A., Soetanto, M. F., Siswantara, A. I., & Bae, M. (2017). Thermo-hydrodynamics performance analysis of fluid flow Through concave delta winglet vortex generators by Numerical simulation. International Journal of Technology, 7, 1276–1285. https://doi.org/https://doi.org/10.14716/ijtech.v8i7.706

Syaiful, Sugiri, G., Soetanto, M. F., & Bae, M. W. (2017). Effect of concave rectangular winglet vortex generator on convection coefficient of heat transfer. AIP Conference Proceedings, 1788, 1–8. https://doi.org/10.1063/1.4968278

Tang, L. ., Chu, W. ., Ahmed, N., & Zeng, M. (2016). A new configuration of winglet longitudinal vortex generator to enhance_read.pdf. Applied Thermal Engineering, 104, 74–84. https://doi.org/http://dx.doi.org/10.1016/j.applthermaleng.2016.05.056

Wen, J., Li, K., Wang, C., Zhang, X., & Wang, S. (2019). Optimization investigation on configuration parameters of sine wavy fin in plate-fin heat exchanger based on fluid structure interaction analysis. International Journal of Heat and Mass Transfer, 131, 385–402. https://doi.org/10.1016/j.ijheatmasstransfer.2018.11.023




DOI: http://dx.doi.org/10.31000/jt.v13i2.14222

Article Metrics

Abstract - 19 PDF - 5

Refbacks

  • There are currently no refbacks.


License URL: https://scholar.google.co.id/citations?user=RJRfBN0AAAAJ&hl=id&authuser=2