Systematic Review Desain Substrat dan Material Catalytic Converter Terhadap Efektivitas Reduksi Emisi Gas Buang pada Internal Combustion Engine
Abstract
Penggunaan bahan bakar fosil pada Internal Combustion Engine memberikan dampak yang sangat serius terhadap lingkungan. Strategi dalam meminimalisir dampak tersebut adalah dengan pengaplikasian catalytic converter (CC) untuk mereduksi gas buang tersebut. Studi ini menggunakan metode sistematik review meta-sintesis, yaitu metode tinjauan sistematis kualitatif yang bertujuan untuk mengumpulkan dan mengekstrak informasi dari artikel yang dianalisis. Data dalam penelitian ini meliputi 22 artikel jurnal internasional terindeks Scopus peringkat Q4-Q1, conference prosiding serta book chapter terkait desain substrat dan material CC terhadap efektivitas reduksi gas buangnya. Hasil ulasan dibahas secara mendalam sehingga diperoleh insight bahwasanya desain substrat dan material CC memberikan dampak yang variatif terhadap efektivitas reduksi gas buang Internal Combustion Engine.
Keywords
Full Text:
PDFReferences
Avneet Kahlon, T. (2023). Catalytic Converters. Chemistry LibreTexts. https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Supplemental_Modules_(Physical_and_Theoretical_Chemistry)/Kinetics/07%3A_Case_Studies-_Kinetics/7.01%3A_Catalytic_Converters
Baruch, J. J. (2008). Combating global warming while enhancing the future. Technology in Society, 30(2), 111–121. https://doi.org/https://doi.org/10.1016/j.techsoc.2007.12.008
Brown, T. E., LeMay, H. E., Bursten, B. E., Murphy, C., Woodward, P., & Stoltzfus, M. E. (2018). Catalytic Converters. Chemistry: The Central Science; Pearson: London, UK.
Chafidz, A., Megawati, Widyastuti, C. R., Augustia, V., Nisa, K., & Ratnaningrum. (2018). Application of copper-zinc metal as a catalytic converter in the motorcycle muffler to reduce the exhaust emissions. IOP Conference Series: Earth and Environmental Science, 167(1). https://doi.org/10.1088/1755-1315/167/1/012014
Clark, J. (2003). THE COLLISION THEORY OF REACTION RATES. https://www.chemguide.co.uk/physical/basicrates/introduction.html
Dey, S., & Chandra Dhal, G. (2020). Controlling carbon monoxide emissions from automobile vehicle exhaust using copper oxide catalysts in a catalytic converter. Materials Today Chemistry, 17, 100282. https://doi.org/10.1016/j.mtchem.2020.100282
EPA. (2024). Carbon Pollution from Transportation 2020. https://www.epa.gov/transportation-air-pollution-and-climate-change/carbon-pollution-transportation
Farrauto, R. J., Deeba, M., & Alerasool, S. (2019). Gasoline automobile catalysis and its historical journey to cleaner air. Nature Catalysis, 2(7), 603–613. https://doi.org/10.1038/s41929-019-0312-9
Farrauto, R. J., & Heck, R. M. (1999). Catalytic converters: State of the art and perspectives. Catalysis Today, 51(3–4), 351–360. https://doi.org/10.1016/S0920-5861(99)00024-3
Francis, C., B. (2006). Systematic Reviews of Qualitative Literature. UK Cochrane Centre.
Gambarotta, A., Papetti, V., & Dimopoulos Eggenschwiler, P. (2019). Analysis of the Effects of Catalytic Converter on Automotive Engines Performance Through Real-Time Simulation Models. Frontiers in Mechanical Engineering, 5(August), 1–17. https://doi.org/10.3389/fmech.2019.00048
Ghofur, A., Soemarno, Hadi, A., & Putra, M. D. (2018). Potential fly ash waste as catalytic converter for reduction of HC and CO emissions. Sustainable Environment Research, 28(6), 357–362. https://doi.org/10.1016/j.serj.2018.07.003
Hannappel, R. (2017). The impact of global warming on the automotive industry. AIP Conference Proceedings, 1871, 1–7. https://doi.org/10.1063/1.4996530
Jan Kašpar, Paolo Fornasiero, N. H. (2003). Automotive catalytic converters: current status and some perspectives. Catalysis Today, Volume 77(4), 419–449. https://doi.org/https://doi.org/10.1016/S0920-5861(02)00384-X
Karthe, M., & Prasanna, S. C. (2017). The mixture of alkaline earth metal and zirconium oxide as a catalyst in catalytic converter. Pakistan Journal of Biotechnology, 14, 168–171.
Kovacev, N., Doustdar, O., Li, S., Tsolakis, A., Herreros, J. M., & Essa, K. (2023). The synergy between substrate architecture of 3D-printed catalytic converters and hydrogen for low-temperature aftertreatment systems. Chemical Engineering Science, 269, 118490. https://doi.org/10.1016/j.ces.2023.118490
Kritsanaviparkporn, E., Baena-Moreno, F. M., & Reina, T. R. (2021). Catalytic Converters for Vehicle Exhaust: Fundamental Aspects and Technology Overview for Newcomers to the Field. Chemistry (Switzerland), 3(2), 630–646. https://doi.org/10.3390/chemistry3020044
Kroeze, C. (1994). Nitrous oxide and global warming. 143, 193–209.
Lapisa, R., Halim, A. G., Sugiarto, T., Arwizet, K., Martias, M., Maksum, H., Krismadinata, K., & Ambiyar, A. (2020). Effect of geometric parameters on the performance of motorcycle catalytic converters. Journal of Physics: Conference Series, 1469(1). https://doi.org/10.1088/1742-6596/1469/1/012176
Laskar, A., & Liang, M. C. (2018). Probing the operational temperatures of vehicular catalytic converters using clumped isotopes in exhaust CO2. EGU General Assembly Conference Abstracts, 13284.
Mahyon, N. I., Li, T., Martinez-Botas, R., Wu, Z., & Li, K. (2019). A new hollow fibre catalytic converter design for sustainable automotive emissions control. Catalysis Communications, 120(November 2018), 86–90. https://doi.org/10.1016/j.catcom.2018.12.001
Milton, B. E. (1998). Control Technologies in Spark-Ignition Engines. In Handbook of Air Pollution From Internal Combustion Engines. https://doi.org/10.1016/b978-012639855-7/50047-8
Patel, K. D., Subedar, D., & Patel, F. (2022). Design and development of automotive catalytic converter using non-nobel catalyst for the reduction of exhaust emission: A review. Materials Today: Proceedings, 57, 2465–2472. https://doi.org/10.1016/j.matpr.2022.03.350
Robles-Lorite, L., Dorado-Vicente, R., Torres-Jiménez, E., Bombek, G., & Lešnik, L. (2023). Recent Advances in the Development of Automotive Catalytic Converters: A Systematic Review. Energies, 16(18), 1–24. https://doi.org/10.3390/en16186425
Santos, H., & Costa, M. (2008). Evaluation of the conversion efficiency of ceramic and metallic three way catalytic converters. Energy Conversion and Management, 49(2), 291–300. https://doi.org/10.1016/j.enconman.2007.06.008
Senthil Kumar, J., Ramesh Bapu, B. R., Sivasaravanan, S., Prabhu, M., Muthu Kumar, S., & Abubacker, M. A. (2022). Experimental studies on emission reduction in a DI diesel engine by using a nano catalyst coated catalytic converter. International Journal of Ambient Energy, 43(1), 1241–1247. https://doi.org/10.1080/01430750.2019.1694584
Siswanto. (2010). Systematic Review Sebagai Metode Penelitian. Buletin Penelitian Sistem Kesehatan 13, i, 326–333.
Srinivasa Chalapathi, K., & Venkateswara Rao, T. (2019). Development of a cost effective catalytic converter for diesel automobiles. International Journal of Recent Technology and Engineering, 8(3), 2989–2994. https://doi.org/10.35940/ijrte.C4823.098319
Subramanian, P., & Gnanasikamani, B. (2023). Study of 4A and 5A zeolite as a catalyst material in a catalytic converter for NO emission reduction in a CI engine. Environmental Science and Pollution Research, 30(14), 41726–41740. https://doi.org/10.1007/s11356-023-25229-9
Venkatesan, S. P., Uday, D. S., Hemant, B. K., Kushwanth Goud, K. R., Kumar, G. L., & Kumar, K. P. (2017). I.C. Engine emission reduction by copper oxide catalytic converter. IOP Conference Series: Materials Science and Engineering, 197(1). https://doi.org/10.1088/1757-899X/197/1/012026
Venkateswarlu, K., Kumar, R. A., Krishna, R., & Sreenivasan, M. (2020). Modeling and fabrication of catalytic converter for emission reduction. Materials Today: Proceedings, 33(xxxx), 1093–1099. https://doi.org/10.1016/j.matpr.2020.07.125
Warju, Harto, S. P., & Soenarto. (2018). The Performance of Chrome-Coated Copper as Metallic Catalytic Converter to Reduce Exhaust Gas Emissions from Spark-Ignition Engine. IOP Conference Series: Materials Science and Engineering, 288(1), 0–15. https://doi.org/10.1088/1757-899X/288/1/012151
Yang, X.; Zuo, Q.; Chen, W.; Guan, Q.; Shen, Z.; Li, Q.; Xie, Y. (2023). Improvement of flow field uniformity and temperature field in gasoline engine catalytic converter. Applied Thermal Engineering, 230, 120792.
Zeng, F., Finke, J., Olsen, D., White, A., & Hohn, K. L. (2018). Modeling of three-way catalytic converter performance with exhaust mixtures from dithering natural gas-fueled engines. Chemical Engineering Journal, 352(November 2017), 389–404. https://doi.org/10.1016/j.cej.2018.07.005
DOI: http://dx.doi.org/10.31000/mbjtm.v9i2.13673
Article Metrics
Abstract - 19 PDF - 0Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Ilyas Sofana
Motor Bakar : Jurnal Teknik Mesin (ISSN: 2549-5038 e-ISSN: 2580-4979)
Copyright © 2017-2020 Program Studi Teknik Mesin Fakultas Teknik Universitas Muhammadiyah Tangerang. All rights reserved.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) License