IMPLEMENTASI METODE K-MEANS DAN K-MEDOIDS PADA PENGELOMPOKAN PROVINSI INDONESIA BERDASARKAN ASPEK PENDIDIKAN PEMUDA

Halima Tusyakdiah, Insani Hasanah, Sri Arista Panggol, Tiara Ramdhanti, Retno Permatasari, Cusanti Cusanti, Edy Widodo

Abstract


The quality of education in Indonesia is still a concern, seen from a number of problems that become obstacles to improving the quality of education as well as affecting the quality of Indonesian youth. This study aims to group provinces in Indonesia based on the aspect of youth education using the K-Means and K-Medoids methods. To determine the optimum k, the average silhouette method is used and the SW and SB ratio is used to evaluate the cluster results. The results obtained are 2 clusters optimum. For the K-Means method, cluster 1 consists of 19 provinces and cluster 2 consists of 14 provinces. Whereas in the K-Medoids method, cluster 1 consists of 22 provinces and cluster 2 consists of 11 provinces. The K-Means method is better than the K-Medoids method because it has a ratio value of 0.527941 which is smaller than the K-Medoid ratio value of 0.5612719.
Keyword: K-Means; K-Medoid; Education; Average Silhouette; Standard Deviation.

Keywords


K-Means; K-Medoid; Education; Average Silhouette; Standard Deviation

Full Text:

PDF

References


D. A. S. Simamora, M. T. (2017). Clustering Data Kejadian Tsunami Yang Disebabkan Oleh Gempa Bumi Dengan Menggunakan Algoritma K-Medoids. International Journal of Computer Applications in Technology, 1(8), 635-640.

D. F. Pramesti, L. M. (2017). Implementasi Metode K-Medoids Clustering Untuk Pengelompokan Data. Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer(J-PTIIK), 1(9), 723-732.

D. Marlina, N. L. (2018). Implementasi Algoritma K-Medoids dan K-Means untuk Pengelompokkan Wilayah Sebaran Cacat pada Anak. Jurnal Hasil Penelitian Ilmu Komputer dan Teknologi Informasi, 4(2), 64.

Fuady, M. B., & Nugraha, J. (2017). IMPLEMENTASI METODE K-MEANS DAN K-MEDOIDS UNTUK MENGELOMPOKKAN 82 KOTA DI INDONESIA BERDASARKAN INDEKS HARGA KONSUMEN. (pp. 327-337). dspace uii.

I. Kamila, U. K. (2019). Perbandingan Algoritma K-Means dan K-Medoids untuk Pengelompokan Data Transaksi Bongkar Muat di Provinsi Riau. jurnal Ilmu Rekayasa dan Manajemen Sistem informasi, 5(1), 119.

Jannah, U. (2009). Perbandingan Jarak Euclid denga Jarak Mahalanobis pada Analisis Cluster Hirarki. Universitas Islam Negeri Maulana Malik Ibrahim.

N. K. Kaur, U. K. (2018). K-Medoid clustering algorithm-a review. International Journal of Computer Applications in Technology, 1(1), 2349-1841.

Santosa, T. A. (2012). Analisis Perbandingan Metode Hierarchical Clustering, K-Means dan Gabungan Keduanya dalam membentuk Cluster Data (Studi Kasus: Problem Kerja Praktek Jurusan Teknik Industri ITS. Jurnal Teknik ITS, 1(1), 1-5.

Statistik, B. P. (2019). Statistik Pemuda Indonesia 2019.

W. J. Bunkers, J. R. (1996). Definition of Climate Regions in the Northem Plains Using an Objective Cluster Modification Technique. Journal Climate, 9, 130-146.

Wichern, R. A. (2002). Apllied Multivariate Statistical Analysis (5th ed.). Prentice-Hall.




DOI: http://dx.doi.org/10.31000/cswb.v3i1.10153

Article Metrics

Abstract - 506 PDF - 409

DOI (PDF): http://dx.doi.org/10.31000/cswb.v3i1.10153.g4751

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Community Services and Social Work Bulletin

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.


Community Services and Social Work Bulletin  is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License


View My Stats