SELECTING THE BEST MODEL FOR FORECASTING INDONESIA'S OIL AND GAS IMPORT VALUE USING ARIMAX AND ARIMAX-LSTM
Abstract
Full Text:
PDFReferences
Ahmed, R., Chen, X. H., Kumpamool, C., & Nguyen, D. T. K. (2023). Inflation, oil prices, and economic activity in recent crisis: Evidence from the UK. Energy Economics, 126, 106918. https://doi.org/https://doi.org/10.1016/j.eneco.2023.106918
Alstadheim, R., Bjørnland, H. C., & Maih, J. (2021). Do central banks respond to exchange rate movements? A Markov-switching structural investigation of commodity exporters and importers. Energy Economics, 96. https://doi.org/10.1016/j.eneco.2021.105138
Amekauma Victor-Edema, U., & Essi, I. D. (2016). Autoregressive Integrated Moving Average with Exogenous Variable (ARIMAX) Model for Nigerian Non-Oil Export. Dalam European Journal of Business and Management www.iiste.org ISSN (Vol. 8, Nomor 36). Online. www.iiste.org
Andriani, Y., Silitonga, H., & Wanto, A. (2018). Analisis jaringan syaraf tiruan untuk prediksi volume ekspor dan impor migas di indonesia. Register: Jurnal Ilmiah Teknologi Sistem Informasi, 4(1), 30–40. https://doi.org/10.26594/register.v4i1.1157
Anggraeni, W., Vinarti, R. A., & Kurniawati, Y. D. (2015). Performance Comparisons between Arima and Arimax Method in Moslem Kids Clothes Demand Forecasting: Case Study. Procedia Computer Science, 72, 630–637. https://doi.org/10.1016/j.procs.2015.12.172
Arize, A. C., Malindretos, J., & Igwe, E. U. (2017). Do exchange rate changes improve the trade balance: An asymmetric nonlinear cointegration approach. International Review of Economics & Finance, 49, 313–326. https://doi.org/https://doi.org/10.1016/j.iref.2017.02.007
Asmarini, W. (2022). Gila Indonesia, Kaya akan Gas Alam Tapi LPG Impor! Cnbcindonesia.Com. https://www.cnbcindonesia.com/news/20220126104815-4-310523/gila-indonesia-kaya-akan-gas-alam-tapi-lpg-impor
Atmaja, S., Kuswarno, E., & Meikyansah, C. (2020). Strategi Public Relations SKK Migas dalam Melaksanakan Program Road to One Million Barrel Oil Per Day. PETANDA: Jurnal Ilmu Komunikasi dan Humaniora, 2(2), 67-79. https://doi.org/10.32509/jhm.v2i2.1028
Awan, A. G., & Mukhtar, S. (2019). Causes of Trade deficit and its impact on Pakistan’s Economic growth. Global Journal of Management, Social Sciences and Humanities, 5(3), 480–498. https://doi.org/10.17051/ilkonline.2020.04.765040
Basundoro, P. (2017). Minyak Bumi dalam Dinamika Politik dan Ekonomi Indonesia 1950-1960an. Airlangga University Press. https://repository.unair.ac.id/91899/1/08 Buku Minyak Fulltext.pdf
Blavasciunaite, D., Garsviene, L., & Matuzeviciute, K. (2020). Trade balance effects on economic growth: Evidence from european union countries. Economies, 8(3). https://doi.org/10.3390/ECONOMIES8030054
Bosupeng, M., Naranpanawa, A., & Su, J.-J. (2023). Does exchange rate volatility affect the impact of appreciation and depreciation on the trade balance? A nonlinear bivariate approach. Economic Modelling, 106592. https://doi.org/https://doi.org/10.1016/j.econmod.2023.106592
Box, G. E., Jenkins, G. M., Reinsel, G. C., & Ljung, G. M. (2015). Time series analysis: forecasting and control. John Wiley & Sons.
Chen, S., Lan, X., Hu, Y., Liu, Q., & Deng, Y. (2014). The time series forecasting: from the aspect of network. arXiv preprint arXiv:1403.1713.
Dave, E., Leonardo, A., Jeanice, M., & Hanafiah, N. (2021). Forecasting Indonesia Exports using a Hybrid Model ARIMA-LSTM. Procedia Computer Science, 179, 480–487. https://doi.org/10.1016/j.procs.2021.01.031
Dickey, D. A., & Fuller, W. A. (1979). Distribution of the Estimators for Autoregressive Time Series with a Unit Root. Journal of the American Statistical Association, 74(366), 427. doi:10.2307/2286348
Fan, D., Sun, H., Yao, J., Zhang, K., Yan, X., & Sun, Z. (2021). Well production forecasting based on ARIMA-LSTM model considering manual operations. Energy, 220. https://doi.org/10.1016/j.energy.2020.119708
Firmansyah, M. H., & Indrajaya, I. G. B. (2019). Pengaruh Ekspor Minyak Bumi Mentah dan Impor Produk Minyak Bumi Olahan terhadap Pertumbuhan Ekonomi Indonesia. E-Jurnal EP Unud, 1, 2277–2304. https://ojs.unud.ac.id/index.php/eep/article/view/75925
Garini, F. C., & Anbiya, W. (2022). Application of GARCH Forecasting Method in Predicting The Number of Rail Passengers (Thousands of People) in Jabodetabek Region. Jurnal Matematika, Statistika dan Komputasi, 18(2), 198–223. https://doi.org/10.20956/j.v18i2.18382
Ghosh, A. R., Ostry, J. D., & Qureshi, M. S. (2015). Exchange Rate Management and Crisis Susceptibility: A Reassessment. IMF Economic Review, 63(1), 238–276. https://doi.org/10.1057/imfer.2014.29
Greunen, J. Van, Heymans, A., Heerden, C. Van, & Vuuren, G. van. (2014). The Prominence of Stationarity in Time Series Forecasting. Journal for Studies in Economics and Econometrics, 38. https://doi.org/10.1080/10800379.2014.12097260
Hanifah, N., & Kartiasih, F. (2018). Determinan Impor Serat Kapas di Indonesia Tahun 1975-2014 (Pendekatan Error Correction Mechanism). Media Statistika, 11(2), 119–134. https://doi.org/10.14710/medstat.11.2.119-134
Hawari, R., & Kartiasih, F. (2017). Kajian Aktivitas Ekonomi Luar Negeri Indonesia Terhadap Pertumbuhan Ekonomi Indonesia Periode 1998-2014. Media Statistika, 9(2), 119. https://doi.org/10.14710/medstat.9.2.119-132
Huang, Y., Shen, L., & Liu, H. (2019). Grey relational analysis, principal component analysis and forecasting of carbon emissions based on long short-term memory in China. Journal of Cleaner Production, 209, 415–423. https://doi.org/10.1016/j.jclepro.2018.10.128
Kartiasih, F., & Setiawan, A. (2020). Aplikasi Error Correction Mechanism dalam Analisis Dampak Pertumbuhan Ekonomi, Konsumsi Energi dan Perdagangan Internasional Terhadap Emisi CO2 di Indonesia. Media Statistika, 13(1), 104–115. https://doi.org/10.14710/medstat.13.1.104-115
Kartiasih, F., Syaukat, Y., & Anggraeni, L. (2012). The determinants of energy intensity in Indonesia. Jurnal Ekonomi Dan Pembangunan Indonesia, 12(2), 192–214. https://doi.org/10.1108/IJOEM-01-2020-0048
Kim, G. Il, & Jang, B. (2023). Petroleum Price Prediction with CNN-LSTM and CNN-GRU Using Skip-Connection. Mathematics, 11(3). https://doi.org/10.3390/math11030547
Kementerian (2023). Minyak Mentah Indonesia (ICP) Oktober 2023 Ditetapkan Turun, menjadi US$86,72 per Barel. https://migas.esdm.go.id/post/read/minyak-mentah-indonesia-icp-oktober-2023-ditetapkan-turun-menjadi-us-86-72-per-barel
Laura, G. D., Chasanah, R. N., Faridah, N., & Kartiasih, F. (2023). Assessing Fiscal Sustainability in Indonesia : Error Correction Mechanism Diagnostic. Jurnal Ekonomi Pembangunan, 21(June), 49–60. https://doi.org/10.29259/jep.v21i1.19624
Margi, K., & Pendawa, S. (2015). Analisa Dan Penerapan Metode Single Exponential Smoothing Untuk Prediksi Penjualan Pada Periode Tertentu (Studi Kasus : PT. Media Cemara Kreasi).
Makridakis, S., Wheelwright, S., & Hyndman, R. J. (1997). Forecasting: Methods and Applications, 3rd Ed. John Wiley & Sons.
Manowska, A., Rybak, A., Dylong, A., & Pielot, J. (2021). Forecasting of natural gas consumption in Poland based on ARIMA‐LSTM hybrid model. Energies, 14(24). https://doi.org/10.3390/en14248597
Milenković, M., Gligorić, M., Bojović, N., & Gligorić, Z. (2023). A comparison between ARIMA, LSTM, ARIMA-LSTM and SSA for cross-border rail freight traffic forecasting: the case of Alpine-Western Balkan Rail Freight Corridor. Transportation Planning and Technology. https://doi.org/10.1080/03081060.2023.2245389
Ningsih, Y. P., & Kartiasih, F. (2019). Dampak Guncangan Pertumbuhan Ekonomi Mitra Dagang Utama terhadap Indikator Makroekonomi Indonesia. Jurnal Ilmiah Ekonomi Dan Bisnis, 16(1), 78–92. https://doi.org/https://doi.org/10.31849/jieb.v16i1.2307
Pangestu, T. S., & Soesanto, E. (2023). Analisis Strategi Indonesia Untuk Menghadapi Pasar Ekspor Migas. Jurnal Mahasiswa Kreatif, 1(4), 162–171. https://doi.org/https://doi.org/10.59581/jmk-widyakarya.v1i4.770
Pertiwi, I. P., Camalia, N. D., Rega, R., & Kartiasih, F. (2023). Mencermati Pengaruh Utang dan Variabel Makroekonomi terhadap Sustainabilitas Fiskal di Indonesia. Jurnal Ilmiah Ekonomi Dan Bisnis, 20(2), 185–193. https://doi.org/https://doi.org/10.31849/jieb.v20i2.12259
Putri, C. A. (2022). Potensi Migas RI Sebenarnya Berlimpah, Tapi. Www.Cnbcindonesia.Com. https://www.cnbcindonesia.com/news/20220321123416-4-324512/potensi-migas-ri-sebenarnya-berlimpah-tapi
Rahayu, S., & Nurdiansyaha, D. H. (2022). Analisis Peramalan Penjualan Produk Kaos Sablon (Studi Kasus: Home Industry Alva Cloth). Jurnal Ilmiah Wahana Pendidikan, 8(22), 383–393. https://doi.org/10.5281/zenodo.7349799
Sa’adah, A. F., Fauzi, A., & Juanda, B. (2017). Peramalan Penyediaan dan Konsumsi Bahan Bakar Minyak Indonesia dengan Model Sistem Dinamik. Jurnal Ekonomi Dan Pembangunan Indonesia, 17, 118–137. https://doi.org/10.21002/jepi.v17i2.02
Sari, T., & Rauf, A. (2018). Dampak Inflasi Terhadap Ekspor Dan Impor Di Indonesia Periode Tahun 2013 – 2017. Dynamic Management Journal, 2. https://doi.org/10.31000/dmj.v2i2.1270
Setyorani, B. (2018). Pengaruh nilai tukar terhadap ekspor dan jumlah uang beredar di indonesia. Forum Ekonomi, 20(1), 1. https://doi.org/10.29264/jfor.v20i1.3307
Somu, N., M R, G. R., & Ramamritham, K. (2020). A hybrid model for building energy consumption forecasting using long short term memory networks. Applied Energy, 261. https://doi.org/10.1016/j.apenergy.2019.114131
Tim Kementerian Keuangan. (2023). Informasi APBN 2023 Peningkatan Produktivitas untuk Transformasi Ekonomi yang Inklusif dan Berkelanjutan. 1–23.
Wang, L., Zou, H., Su, J., Li, L., & Chaudhry, S. (2013). An ARIMA‐ANN hybrid model for time series forecasting. Systems Research and Behavioral Science, 30(3), 244-259. https://doi.org/10.1002/sres.2179
Wardah, S. (2016). Analisis Peramalan Penjualan Produk Keripik Pisang Kemasan Bungkus (Studi Kasus : Home Industry Arwana Food Tembilahan). Dalam Jurnal Teknik Industri: Vol. XI (Nomor 3). https://doi.org/10.14710/jati.11.3.135-142
Wen, T., Liu, Y., Bai, Y. he, & Liu, H. (2023). Modeling and forecasting CO2 emissions in China and its regions using a novel ARIMA-LSTM model. Heliyon, 9(11). https://doi.org/10.1016/j.heliyon.2023.e21241
Wu, Q., & Lin, H. (2019). Daily urban air quality index forecasting based on variational mode decomposition, sample entropy and LSTM neural network. Sustainable Cities and Society, 50. https://doi.org/10.1016/j.scs.2019.101657
Xiong, Q., Liu, M., Li, Y., Zheng, C., & Deng, S. (2023). applied sciences Short-Term Load Forecasting Based on VMD and Deep TCN-Based Hybrid Model with Self-Attention Mechanism. https://doi.org/10.3390/app132212479
Zhang, D., Fang, Y., & Liu, Y. (2023). Import demand under price and exchange-rate uncertainties: The case of U.S. Atlantic salmon imports. Aquaculture, 574, 739712. https://doi.org/https://doi.org
DOI: http://dx.doi.org/10.31000/dmj.v8i4.10776
Article Metrics
Abstract - 55 PDF - 52Refbacks
- There are currently no refbacks.
Jurnal ini telah terindeks dalam:
Office:
Editor of Dynamic Management Journal (DMJ) UMT, Building F, 3rd Floor, Department Management Faculty of Economics and Business, Universitiy Of Muhammadiyah Tangerang
Jl. Perintis Kemerdekaan I No.33, RT.007/RW.003, Babakan, Cikokol, Kec. Tangerang, Kota Tangerang, Banten 15118
Wa: 08567312111 (Galuh), 085716034977 (Eky)
Email: dynamic@gmail.com
Dynamic management journal is licensed under Attribution-ShareAlike 4.0 International