SELECTING THE BEST MODEL FOR FORECASTING INDONESIA'S OIL AND GAS IMPORT VALUE USING ARIMAX AND ARIMAX-LSTM

Alvandi Syukur Rahmat Zega, Anang Kurnia Hidayat, Nazwa Thoriqul Jannah, Fitri Kartiasih

Abstract


In order for the government to make the best policy decisions going forward, it is critical to forecast the value of oil and gas imports. This study aims to anticipate Indonesia's oil and gas import value by taking into account the independent variables of inflation, rupiah exchange rates, and global crude oil prices. The ARIMA (Autoregressive Integrated Moving Average), ARIMAX (ARIMA With Exogenous Variable), and Hybrid ARIMAX-LSTM (ARIMA With Exogenous Variable Long-Short-Term Memory) are the methods that are compared. Mean Absolute Percentage Error, or MAPE, is a tool used to compare forecasting models. The outcomes demonstrated how well ARIMAX-LSTM (0, 1, 2) predicts and forecasts the value of oil and gas imports when combined with variables for inflation and crude oil prices. According to the forecasting results, the value of imports of gas and oil increased by 3.03% between January and September of 2024 when compared to the entire import value of the year prior (Y-o-Y). Other exogenous variable addition, additional research on hyperparameter tuning, and the use of cross-validation techniques to increase prediction accuracy and provide more precise measurements of model performance are other recommendations for future investigation.

Full Text:

PDF

References


Ahmed, R., Chen, X. H., Kumpamool, C., & Nguyen, D. T. K. (2023). Inflation, oil prices, and economic activity in recent crisis: Evidence from the UK. Energy Economics, 126, 106918. https://doi.org/https://doi.org/10.1016/j.eneco.2023.106918

Alstadheim, R., Bjørnland, H. C., & Maih, J. (2021). Do central banks respond to exchange rate movements? A Markov-switching structural investigation of commodity exporters and importers. Energy Economics, 96. https://doi.org/10.1016/j.eneco.2021.105138

Amekauma Victor-Edema, U., & Essi, I. D. (2016). Autoregressive Integrated Moving Average with Exogenous Variable (ARIMAX) Model for Nigerian Non-Oil Export. Dalam European Journal of Business and Management www.iiste.org ISSN (Vol. 8, Nomor 36). Online. www.iiste.org

Andriani, Y., Silitonga, H., & Wanto, A. (2018). Analisis jaringan syaraf tiruan untuk prediksi volume ekspor dan impor migas di indonesia. Register: Jurnal Ilmiah Teknologi Sistem Informasi, 4(1), 30–40. https://doi.org/10.26594/register.v4i1.1157

Anggraeni, W., Vinarti, R. A., & Kurniawati, Y. D. (2015). Performance Comparisons between Arima and Arimax Method in Moslem Kids Clothes Demand Forecasting: Case Study. Procedia Computer Science, 72, 630–637. https://doi.org/10.1016/j.procs.2015.12.172

Arize, A. C., Malindretos, J., & Igwe, E. U. (2017). Do exchange rate changes improve the trade balance: An asymmetric nonlinear cointegration approach. International Review of Economics & Finance, 49, 313–326. https://doi.org/https://doi.org/10.1016/j.iref.2017.02.007

Asmarini, W. (2022). Gila Indonesia, Kaya akan Gas Alam Tapi LPG Impor! Cnbcindonesia.Com. https://www.cnbcindonesia.com/news/20220126104815-4-310523/gila-indonesia-kaya-akan-gas-alam-tapi-lpg-impor

Atmaja, S., Kuswarno, E., & Meikyansah, C. (2020). Strategi Public Relations SKK Migas dalam Melaksanakan Program Road to One Million Barrel Oil Per Day. PETANDA: Jurnal Ilmu Komunikasi dan Humaniora, 2(2), 67-79. https://doi.org/10.32509/jhm.v2i2.1028

Awan, A. G., & Mukhtar, S. (2019). Causes of Trade deficit and its impact on Pakistan’s Economic growth. Global Journal of Management, Social Sciences and Humanities, 5(3), 480–498. https://doi.org/10.17051/ilkonline.2020.04.765040

Basundoro, P. (2017). Minyak Bumi dalam Dinamika Politik dan Ekonomi Indonesia 1950-1960an. Airlangga University Press. https://repository.unair.ac.id/91899/1/08 Buku Minyak Fulltext.pdf

Blavasciunaite, D., Garsviene, L., & Matuzeviciute, K. (2020). Trade balance effects on economic growth: Evidence from european union countries. Economies, 8(3). https://doi.org/10.3390/ECONOMIES8030054

Bosupeng, M., Naranpanawa, A., & Su, J.-J. (2023). Does exchange rate volatility affect the impact of appreciation and depreciation on the trade balance? A nonlinear bivariate approach. Economic Modelling, 106592. https://doi.org/https://doi.org/10.1016/j.econmod.2023.106592

Box, G. E., Jenkins, G. M., Reinsel, G. C., & Ljung, G. M. (2015). Time series analysis: forecasting and control. John Wiley & Sons.

Chen, S., Lan, X., Hu, Y., Liu, Q., & Deng, Y. (2014). The time series forecasting: from the aspect of network. arXiv preprint arXiv:1403.1713.

Dave, E., Leonardo, A., Jeanice, M., & Hanafiah, N. (2021). Forecasting Indonesia Exports using a Hybrid Model ARIMA-LSTM. Procedia Computer Science, 179, 480–487. https://doi.org/10.1016/j.procs.2021.01.031

Dickey, D. A., & Fuller, W. A. (1979). Distribution of the Estimators for Autoregressive Time Series with a Unit Root. Journal of the American Statistical Association, 74(366), 427. doi:10.2307/2286348

Fan, D., Sun, H., Yao, J., Zhang, K., Yan, X., & Sun, Z. (2021). Well production forecasting based on ARIMA-LSTM model considering manual operations. Energy, 220. https://doi.org/10.1016/j.energy.2020.119708

Firmansyah, M. H., & Indrajaya, I. G. B. (2019). Pengaruh Ekspor Minyak Bumi Mentah dan Impor Produk Minyak Bumi Olahan terhadap Pertumbuhan Ekonomi Indonesia. E-Jurnal EP Unud, 1, 2277–2304. https://ojs.unud.ac.id/index.php/eep/article/view/75925

Garini, F. C., & Anbiya, W. (2022). Application of GARCH Forecasting Method in Predicting The Number of Rail Passengers (Thousands of People) in Jabodetabek Region. Jurnal Matematika, Statistika dan Komputasi, 18(2), 198–223. https://doi.org/10.20956/j.v18i2.18382

Ghosh, A. R., Ostry, J. D., & Qureshi, M. S. (2015). Exchange Rate Management and Crisis Susceptibility: A Reassessment. IMF Economic Review, 63(1), 238–276. https://doi.org/10.1057/imfer.2014.29

Greunen, J. Van, Heymans, A., Heerden, C. Van, & Vuuren, G. van. (2014). The Prominence of Stationarity in Time Series Forecasting. Journal for Studies in Economics and Econometrics, 38. https://doi.org/10.1080/10800379.2014.12097260

Hanifah, N., & Kartiasih, F. (2018). Determinan Impor Serat Kapas di Indonesia Tahun 1975-2014 (Pendekatan Error Correction Mechanism). Media Statistika, 11(2), 119–134. https://doi.org/10.14710/medstat.11.2.119-134

Hawari, R., & Kartiasih, F. (2017). Kajian Aktivitas Ekonomi Luar Negeri Indonesia Terhadap Pertumbuhan Ekonomi Indonesia Periode 1998-2014. Media Statistika, 9(2), 119. https://doi.org/10.14710/medstat.9.2.119-132

Huang, Y., Shen, L., & Liu, H. (2019). Grey relational analysis, principal component analysis and forecasting of carbon emissions based on long short-term memory in China. Journal of Cleaner Production, 209, 415–423. https://doi.org/10.1016/j.jclepro.2018.10.128

Kartiasih, F., & Setiawan, A. (2020). Aplikasi Error Correction Mechanism dalam Analisis Dampak Pertumbuhan Ekonomi, Konsumsi Energi dan Perdagangan Internasional Terhadap Emisi CO2 di Indonesia. Media Statistika, 13(1), 104–115. https://doi.org/10.14710/medstat.13.1.104-115

Kartiasih, F., Syaukat, Y., & Anggraeni, L. (2012). The determinants of energy intensity in Indonesia. Jurnal Ekonomi Dan Pembangunan Indonesia, 12(2), 192–214. https://doi.org/10.1108/IJOEM-01-2020-0048

Kim, G. Il, & Jang, B. (2023). Petroleum Price Prediction with CNN-LSTM and CNN-GRU Using Skip-Connection. Mathematics, 11(3). https://doi.org/10.3390/math11030547

Kementerian (2023). Minyak Mentah Indonesia (ICP) Oktober 2023 Ditetapkan Turun, menjadi US$86,72 per Barel. https://migas.esdm.go.id/post/read/minyak-mentah-indonesia-icp-oktober-2023-ditetapkan-turun-menjadi-us-86-72-per-barel

Laura, G. D., Chasanah, R. N., Faridah, N., & Kartiasih, F. (2023). Assessing Fiscal Sustainability in Indonesia : Error Correction Mechanism Diagnostic. Jurnal Ekonomi Pembangunan, 21(June), 49–60. https://doi.org/10.29259/jep.v21i1.19624

Margi, K., & Pendawa, S. (2015). Analisa Dan Penerapan Metode Single Exponential Smoothing Untuk Prediksi Penjualan Pada Periode Tertentu (Studi Kasus : PT. Media Cemara Kreasi).

Makridakis, S., Wheelwright, S., & Hyndman, R. J. (1997). Forecasting: Methods and Applications, 3rd Ed. John Wiley & Sons.

Manowska, A., Rybak, A., Dylong, A., & Pielot, J. (2021). Forecasting of natural gas consumption in Poland based on ARIMA‐LSTM hybrid model. Energies, 14(24). https://doi.org/10.3390/en14248597

Milenković, M., Gligorić, M., Bojović, N., & Gligorić, Z. (2023). A comparison between ARIMA, LSTM, ARIMA-LSTM and SSA for cross-border rail freight traffic forecasting: the case of Alpine-Western Balkan Rail Freight Corridor. Transportation Planning and Technology. https://doi.org/10.1080/03081060.2023.2245389

Ningsih, Y. P., & Kartiasih, F. (2019). Dampak Guncangan Pertumbuhan Ekonomi Mitra Dagang Utama terhadap Indikator Makroekonomi Indonesia. Jurnal Ilmiah Ekonomi Dan Bisnis, 16(1), 78–92. https://doi.org/https://doi.org/10.31849/jieb.v16i1.2307

Pangestu, T. S., & Soesanto, E. (2023). Analisis Strategi Indonesia Untuk Menghadapi Pasar Ekspor Migas. Jurnal Mahasiswa Kreatif, 1(4), 162–171. https://doi.org/https://doi.org/10.59581/jmk-widyakarya.v1i4.770

Pertiwi, I. P., Camalia, N. D., Rega, R., & Kartiasih, F. (2023). Mencermati Pengaruh Utang dan Variabel Makroekonomi terhadap Sustainabilitas Fiskal di Indonesia. Jurnal Ilmiah Ekonomi Dan Bisnis, 20(2), 185–193. https://doi.org/https://doi.org/10.31849/jieb.v20i2.12259

Putri, C. A. (2022). Potensi Migas RI Sebenarnya Berlimpah, Tapi. Www.Cnbcindonesia.Com. https://www.cnbcindonesia.com/news/20220321123416-4-324512/potensi-migas-ri-sebenarnya-berlimpah-tapi

Rahayu, S., & Nurdiansyaha, D. H. (2022). Analisis Peramalan Penjualan Produk Kaos Sablon (Studi Kasus: Home Industry Alva Cloth). Jurnal Ilmiah Wahana Pendidikan, 8(22), 383–393. https://doi.org/10.5281/zenodo.7349799

Sa’adah, A. F., Fauzi, A., & Juanda, B. (2017). Peramalan Penyediaan dan Konsumsi Bahan Bakar Minyak Indonesia dengan Model Sistem Dinamik. Jurnal Ekonomi Dan Pembangunan Indonesia, 17, 118–137. https://doi.org/10.21002/jepi.v17i2.02

Sari, T., & Rauf, A. (2018). Dampak Inflasi Terhadap Ekspor Dan Impor Di Indonesia Periode Tahun 2013 – 2017. Dynamic Management Journal, 2. https://doi.org/10.31000/dmj.v2i2.1270

Setyorani, B. (2018). Pengaruh nilai tukar terhadap ekspor dan jumlah uang beredar di indonesia. Forum Ekonomi, 20(1), 1. https://doi.org/10.29264/jfor.v20i1.3307

Somu, N., M R, G. R., & Ramamritham, K. (2020). A hybrid model for building energy consumption forecasting using long short term memory networks. Applied Energy, 261. https://doi.org/10.1016/j.apenergy.2019.114131

Tim Kementerian Keuangan. (2023). Informasi APBN 2023 Peningkatan Produktivitas untuk Transformasi Ekonomi yang Inklusif dan Berkelanjutan. 1–23.

Wang, L., Zou, H., Su, J., Li, L., & Chaudhry, S. (2013). An ARIMA‐ANN hybrid model for time series forecasting. Systems Research and Behavioral Science, 30(3), 244-259. https://doi.org/10.1002/sres.2179

Wardah, S. (2016). Analisis Peramalan Penjualan Produk Keripik Pisang Kemasan Bungkus (Studi Kasus : Home Industry Arwana Food Tembilahan). Dalam Jurnal Teknik Industri: Vol. XI (Nomor 3). https://doi.org/10.14710/jati.11.3.135-142

Wen, T., Liu, Y., Bai, Y. he, & Liu, H. (2023). Modeling and forecasting CO2 emissions in China and its regions using a novel ARIMA-LSTM model. Heliyon, 9(11). https://doi.org/10.1016/j.heliyon.2023.e21241

Wu, Q., & Lin, H. (2019). Daily urban air quality index forecasting based on variational mode decomposition, sample entropy and LSTM neural network. Sustainable Cities and Society, 50. https://doi.org/10.1016/j.scs.2019.101657

Xiong, Q., Liu, M., Li, Y., Zheng, C., & Deng, S. (2023). applied sciences Short-Term Load Forecasting Based on VMD and Deep TCN-Based Hybrid Model with Self-Attention Mechanism. https://doi.org/10.3390/app132212479

Zhang, D., Fang, Y., & Liu, Y. (2023). Import demand under price and exchange-rate uncertainties: The case of U.S. Atlantic salmon imports. Aquaculture, 574, 739712. https://doi.org/https://doi.org




DOI: http://dx.doi.org/10.31000/dmj.v8i4.10776

Article Metrics

Abstract - 243 PDF - 158

Refbacks

  • There are currently no refbacks.


Jurnal ini telah terindeks dalam:


googleGaruda crossref dimention



Office:
Editor of Dynamic Management Journal (DMJ) UMT, Building F, 3rd Floor, Department Management Faculty of Economics and Business, Universitiy Of Muhammadiyah Tangerang
Jl. Perintis Kemerdekaan I No.33, RT.007/RW.003, Babakan, Cikokol, Kec. Tangerang, Kota Tangerang, Banten 15118

Wa08567312111 (Galuh), 085716034977 (Eky)
Email: dynamic@gmail.com 


Dynamic management journal is licensed under Attribution-ShareAlike 4.0 International