SENTIMENT ANALYSIS OF VIDEO EDITING APPLICATIONS USING SUPPORT VECTOR MACHINE ON GOOGLE COLAB

Mugi Raharjo, Jordy Lasmana Putra, Sujiliani Heristian, Musriatun Napiah

Abstract


Sentiment analysis is an important approach in understanding user opinions about an application. This study aims to analyze user reviews of the CapCut application using the Support Vector Machine (SVM) algorithm on the Google Colab platform. The preprocessing stages include data cleaning, word normalization using a dictionary from Kaggle, case folding, tokenization, stopword removal, and stemming. Furthermore, the data is converted into a numerical representation using the TF-IDF vectorization method. The labeling process is carried out using a sentiment lexicon obtained from GitHub. After performing data splitting, the SVM model is applied to classify sentiment into three categories: positive, negative, and neutral. The evaluation results show that the SVM model achieves the best accuracy of 90.12%. Based on the classification report, the model has high precision of 0.94 for positive and negative classes and 0.83 for the neutral class. Additionally, the confusion matrix indicates that the model can classify sentiment quite well, although there are still minor errors in predicting neutral sentiment. The findings of this study demonstrate that the SVM method can be effectively used to analyze user sentiment toward the CapCut application, providing valuable insights for improving user experience in the future.


Full Text:

PDF

References


Ahmed Khan, T., Sadiq, R., Shahid, Z., Alam, M. M., & Mohd Su’ud, M. (2024). Sentiment Analysis using Support Vector Machine and Random Forest. Journal of Informatics and Web Engineering, 3(1), 67–75. https://doi.org/10.33093/jiwe.2024.3.1.5

Aryanti, R., Misriati, T., & Sagiyanto, A. (2023). Analisis Sentimen Aplikasi Primaku Menggunakan Algoritma Random Forest dan SMOTE untuk Mengatasi Ketidakseimbangan Data. Journal of Computer System and Informatics (JoSYC), 5(1), 218–227. https://doi.org/10.47065/josyc.v5i1.4562

Dwi, E., Wardani, K., Yo, F. F., Meylugita, W. N., Katolik, U., & Charitas, M. (2025). IMPLEMENTASI ALGORITMA NAÏVE BAYES UNTUK ANALISIS ULASAN IMPLEMENTATION OF THE NAIVE BAYES ALGORITHM FOR USER REVIEW, 4(1), 13–24.

Friska Aditia Indriyani, Ahmad Fauzi, & Sutan Faisal. (2023). Analisis sentimen aplikasi tiktok menggunakan algoritma naïve bayes dan support vector machine. TEKNOSAINS : Jurnal Sains, Teknologi dan Informatika, 10(2), 176–184. https://doi.org/10.37373/tekno.v10i2.419

Han, K. X., Chien, W., Chiu, C. C., & Cheng, Y. T. (2020). Application of support vector machine (SVM) in the sentiment analysis of twitter dataset. Applied Sciences (Switzerland), 10(3). https://doi.org/10.3390/app10031125

Indrayanto, C. G., Ratnawati, D. E., & Rahayudi, B. (2023). Analisis Sentimen Data Ulasan Pengguna Aplikasi MyPertamina di Indonesia pada Google Play Store menggunakan Metode Random Forest. Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, 7(3), 1131–1139. Diambil dari http://j-ptiik.ub.ac.id

Khaira, U., Aryani, R., & Hardian, R. W. (2023). Komparasi Algoritma Naïve Bayes Dan Support Vector Machine (SVM) Pada Analisis Sentimen Kebijakan Kemdikbudristek Mengenai Kuota Internet Selama Covid-19. Jurnal PROCESSOR, 18(2), 272–285. https://doi.org/10.33998/processor.2023.18.2.897

Machmud, A., Wibisono, B., & Suryani, N. (2025). Analisis Sentimen Cyberbullying Pada Komentar X Menggunakan Metode Naïve Bayes, 5(1).

Muhammadi, R. H., Laksana, T. G., & Arifa, A. B. (2022). Combination of Support Vector Machine and Lexicon-Based Algorithm in Twitter Sentiment Analysis. Khazanah Informatika : Jurnal Ilmu Komputer dan Informatika, 8(1), 59–71. https://doi.org/10.23917/khif.v8i1.15213

Puji Astuti, A., Alam, S., & Jaelani, I. (2022). Komparasi Algoritma Support Vector Machine dengan Naive Bayes Untuk Analisis Sentimen Pada Aplikasi BRImo. Jurnal Bangkit Indonesia, 11(2), 1–6. https://doi.org/10.52771/bangkitindonesia.v11i2.196

Purnamawati, A., Winarto, M. N., & Mailasari, M. (2023). Analisis Sentimen Aplikasi TikTok menggunakan Metode BM25 dan Improved K-NN Fitur Chi-Square. Jurnal Komtika (Komputasi dan Informatika), 7(1), 97–105. https://doi.org/10.31603/komtika.v7i1.8938

Romadoni, F., Umaidah, Y., & Sari, B. N. (2020). Text Mining Untuk Analisis Sentimen Pelanggan Terhadap Layanan Uang Elektronik Menggunakan Algoritma Support Vector Machine. Jurnal Sisfokom (Sistem Informasi dan Komputer), 9(2), 247–253. https://doi.org/10.32736/sisfokom.v9i2.903

Vincent, R., Maulana, I., & Komarudin, O. (2024). Perbandingan Klasifikasi Naive Bayes Dan Support Vector Machine Dalam Analisis Sentimen Dengan Multiclass Di Twitter. JATI (Jurnal Mahasiswa Teknik Informatika), 7(4), 2496–2505. https://doi.org/10.36040/jati.v7i4.7152

Wankhade, M., Rao, A. C. S., & Kulkarni, C. (2022). A survey on sentiment analysis methods, applications, and challenges. Artificial Intelligence Review (Vol. 55). Springer Netherlands. https://doi.org/10.1007/s10462-022-10144-1

Yuniar, P., & Kismiantini. (2023). Analisis Sentimen Ulasan pada Gojek Menggunakan Metode Naive Bayes. Statistika, 23(2), 164–175. https://doi.org/10.29313/statistika.v23i2.2353




DOI: http://dx.doi.org/10.31000/jika.v9i2.13699

Article Metrics

Abstract - 299 PDF - 247

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

INDEX BY :