#PrayForKanjuruhan On Twitter: Public Response to the Kanjuruhan Stadium Disaster
Abstract
Social media is a forum for users to disseminate information. One of the social media used to provide information is social media Twitter. Twitter is a social media that can express opinions effectively on various issues. The focus of this research is to analyze the activity of the hashtag #PrayForKanjuruhan on Twitter social media. The presence of the #PrayForKanjuruhan hashtag was caused by the tragedy of the riot that occurred between supporters and the police at the Kanjuruhan Stadium, which resulted in many fatalities. This study aims to explore the intensity of the conversation on the hashtag #PrayForKanjuruhan and analyze issues with the topic of concern and criticism in the hashtag conversation #PrayForKanjuruhan on Twitter social media. This study uses a qualitative method with a Qualitative Data Analysis (QDA) Miner approach, which is helpful in network, content, and cloud analysis using the Nvivo 12 Plus software. The study results show that the conversation intensity on the #PrayForKanjuruhan hashtag is relatively high, with responses from various groups. The response to the kanjuruhan stadium tragedy found that concern for the victims was greater than criticism of the actors involved. Social media Twitter is an effective forum for users to express responses in response to the Kanjuruhan Stadium disaster.
Keywords: Public response, social media, Kanjuruhan Stadium disaster
ABSTRAK
Media sosial merupakan wadah bagi pengguna untuk menyebarkan informasi. Salah satu media sosial yang digunakan untuk memberikan informasi adalah media sosial Twitter. Twitter adalah media sosial yang dapat mengekspresikan pendapat secara efektif tentang berbagai masalah. Fokus penelitian ini adalah menganalisis aktivitas hashtag #PrayForKanjuruhan di media sosial Twitter. Kehadiran tagar #PrayForKanjuruhan diakibatkan oleh tragedi kerusuhan yang terjadi antara supporter dan polisi di Stadion Kanjuruhan sehingga banyak memakan korban jiwa. Tujuan penelitian kali ini melakukan eskplorasi terkait intensitas percakapan pada tagar #PrayForKanjuruhan dan menganalisis isu dengan topic kepedulian serta kritik pada percakapan tagar #PrayForKanjuruhan di media sosial Twitter. Penelitian ini menggunakan metode kualitatif dengan pendekatan Qualitative Data Analysis (QDA) Miner yang berguna dalam analisis jaringan, konten, dan cloud menggunakan software Nvivo 12 Plus. Hasil penelitian menunjukkan bahwa intensitas percakapan pada hashtag #PrayForKanjuruhan relatif tinggi, dengan tanggapan yang datang dari berbagai kalangan. Respon yang tercipta terkait tragedi stadion kanjuruhan ditemukan kepedulian pada korban lebih tinggi dibandingkan kritik terhadap aktor yang terlibat. Media sosial twitter menjadi wadah yang efektif untuk bagi pengguna untuk mengekspresikan tanggapan dalam merespon bencana stadion kanjuruhan.
Kata Kunci: Respon public, media social, bencana Stadion Kanjuruhan
Full Text:
PDFReferences
Aisyah, I., & Hasfi, N. (2022). Opini Publik Dalam Gerakan Tagar #percumalaporpolisi Di Media Sosial Twitter. Interaksi Online, 10(3), 605-618.
Alexandre Huang, Z., & Wang, R. (2019). Building a Network to "Tell China Stories Well": Chinese Diplomatic Communication Strategies on Twitter. International Journal of Communication, 13, 2984-3007.
Anson, S., Watson, H., Wadhwa, K., & Metz, K. (2017). Analyzing social media data for disaster preparedness: Understanding the opportunities and barriers faced by humanitarian actors. International Journal of Disaster Risk Reduction, 21, 131-139. https://doi.org/10.1016/j.ijdrr.2016.11.014
Azmi, N. A., Fathani, A. T., Sadayi, D. P., & Fitriani, I. (2021). Social Media Network Analysis ( SNA )/ : Identifikasi Komunikasi dan Penyebaran Informasi Melalui Media Sosial Twitter. Jurnal Media Informatika Budidarma, 5(4), 1422-1430. https://doi.org/10.30865/mib.v5i4.3257
Baharuddin, T., Salahudin, S., Sairin, S., Qodir, Z., & Jubba, H. (2021). Kampanye Antikorupsi Kaum Muda melalui Media Sosial Twitter. Jurnal Ilmu Komunikasi, 19(1), 58. https://doi.org/10.31315/jik.v19i1.3827
Bogen, K. W., Bleiweiss, K. K., Leach, N. R., & Orchowski, L. M. (2021). #MeToo: Disclosure and Response to Sexual Victimization on Twitter. Journal of Interpersonal Violence, 36(17-18), 8257-8288. https://doi.org/10.1177/0886260519851211
Bogen, K. W., Mulla, M. M. M., Haikalis, M., & Orchowski, L. M. (2022). Sexual Victimization Among Men: A Qualitative Analysis of the Twitter Hashtag #UsToo. Journal of Interpersonal Violence, 37(9-10), 1-25. https://doi.org/10.1177/0886260520967167
Brandão, C. (2015). P. Bazeley and K. Jackson, Qualitative Data Analysis with NVivo (2nd ed.) . Qualitative Research in Psychology, 12(4), 492-494. https://doi.org/10.1080/14780887.2014.992750
Buntoro, K., Suswanta, S., Nurmandi, A., Setiawan, A., & Saputra, H. A. (2021). Twitter Media Activities: Virtual Activism Related To China Uighur Muslim Problems. Jurnal Tarbiyatuna, 12(1), 1-18. https://doi.org/10.31603/tarbiyatuna.v12i1.4115
CNN Indonesia. (2022). Warganet Berbelasungkawa, Tagar Pray For Kanjuruhan Menggema. https://www.cnnindonesia.com/teknologi/20221003094156-192-855554/warganet-berbelasungkawa-tagar-pray-for-kanjuruhan-menggema
Darwis, D., Siskawati, N., & Abidin, Z. (2021). Penerapan Algoritma Naive Bayes Untuk Analisis Sentimen Review Data Twitter Bmkg Nasional. Jurnal Tekno Kompak, 15(1), 131. https://doi.org/10.33365/jtk.v15i1.744
Detik News. (2022). Korban Tewas Tragedi Kanjuruhan Bertambah Jadi 132 Orang. https://news.detik.com/berita/d-6341986/korban-tewas-tragedi-kanjuruhan-bertambah-jadi-132-orang
Diba, F., Ichsan, I., Muhsin, M., Marthoenis, M., Sofyan, H., Andalas, M., Monfared, I., Richert, K., Kaplan, L., Rogge, L., Doria, S., Samadi, S., & Vollmer, S. (2019). Healthcare providers' perception of the referral system in maternal care facilities in Aceh, Indonesia: A cross-sectional study. BMJ Open, 9(12), 1-8. https://doi.org/10.1136/bmjopen-2019-031484
Fang, J., Hu, J., Shi, X., & Zhao, L. (2019). Assessing disaster impacts and response using social media data in China: A case study of 2016 Wuhan rainstorm. International Journal of Disaster Risk Reduction, 34(December 2018), 275-282. https://doi.org/10.1016/j.ijdrr.2018.11.027
Fiqri, U. P. (2020). Dialog Humor Antar Agama Dan Politik Pada Akun Twitter @Nugarislucu @Eko_kuntadhi. Jurnal Riset Mahasiswa Dakwah Dan Komunikasi, 2(1), 15-25. https://ejournal.uin-suska.ac.id/index.php/jrmdk/article/view/8815/6106
Fitriani, L., Pawito, P., & Utari, P. (2022). The analysis of the hashtag #Jokowi404NotFound on Twitter in protesting mural removal in the public sphere. Informasi, 51(2), 281-304. https://doi.org/10.21831/informasi.v51i2.45068
García-Ramírez, G. M., Bogen, K. W., Rodríguez-Guzmán, V. M., Nugent, N., & Orchowski, L. M. (2021). #4645Boricuas: Twitter reactions to the estimates of deaths by Hurricane María in Puerto Rico. Journal of Community Psychology, 49(3), 768-790. https://doi.org/10.1002/jcop.22295
Gargiulo, F., Cafiero, F., Guille-Escuret, P., Seror, V., & Ward, J. K. (2020). Asymmetric participation of defenders and critics of vaccines to debates on French-speaking Twitter. Scientific Reports, 10(1), 1-12. https://doi.org/10.1038/s41598-020-62880-5
George Efthimion, P., Payne, S., Proferes, N., Efthimion, P. G., & Proferes, N. (2018). Supervised Machine Learning Bot Detection Techniques to Identify Social Twitter Bots. SMU Data Science Review, 1(2).
Glowacki, E. M., Lazard, A. J., Wilcox, G. B., Mackert, M., & Bernhardt, J. M. (2016). Identifying the public's concerns and the Centers for Disease Control and Prevention's reactions during a health crisis: An analysis of a Zika live Twitter chat. American Journal of Infection Control, 44(12), 1709-1711. https://doi.org/10.1016/j.ajic.2016.05.025
Gorodnichenko, Y., Pham, T., & Talavera, O. (2021). Social media , sentiment and public opinions/ : Evidence from # Brexit and # USElection. European Economic Review, 136, 103772. https://doi.org/10.1016/j.euroecorev.2021.103772
Hermida, A., Lewis, S. C., & Zamith, R. (2014). Sourcing the Arab spring: A case study of Andy Carvin's sources on twitter during the Tunisian and Egyptian revolutions. Journal of Computer-Mediated Communication, 19(3), 479-499. https://doi.org/10.1111/jcc4.12074
Himelboim, I., Smith, M., & Shneiderman, B. (2013). Tweeting Apart: Applying Network Analysis to Detect Selective Exposure Clusters in Twitter. Communication Methods and Measures, 7(3), 169-197. https://doi.org/10.1080/19312458.2013.813922
Irawan, A. W., Yusufianto, A., Agustina, D., & Dean, R. (2020). Laporan survei internet APJII 2019 - 2020 (Q20. Asosiasi Penyelenggara Jasa Internet Indonesia, 2020. https://apjii.or.id/survei
Irawan, B. (2022). Policies for controlling the covid-19 pandemic through social media communications by the East Kalimantan provincial government. International Journal of Communication and Society, 4(1), 125-136. http://pubs2.ascee.org/index.php/IJCSIJCS@ascee.org
Isa, D., & Himelboim, I. (2018). A Social Networks Approach to Online Social Movement: Social Mediators and Mediated Content in #FreeAJStaff Twitter Network. Social Media and Society, 4(1). https://doi.org/10.1177/2056305118760807
Jamil, A. (2018). Social Movements in Framing Perspectives: A Study on Corruption Case Issues in Indonesia. Jurnal Komunikasi Indonesia, 7(2). https://doi.org/10.7454/jki.v7i2.9989
Klingeren, M. Van, Trilling, D., & Möller, J. (2020). Public opinion on Twitter/ ? How vote choice and arguments on Twitter comply with patterns in survey data , evidence from the 2016 Ukraine referendum in the Netherlands. Acta Politica, 56, 436-455. https://doi.org/10.1057/s41269-020-00160-w
Loilatu, M. J., Irawan, B., Salahudin, S., & Sihidi, I. T. (2021). Analysis of Twitter's Function as a Media communication of Public Transportation. Jurnal Komunikasi, 13(1), 54. https://doi.org/10.24912/jk.v13i1.8707
Makmun, S., & Rohim. (2021). Advokasi Kelompok Disabilitas Melalui Media Sosial. Majalah Ilmiah Dian Ilmu, 20(2), 165-181. https://doi.org/10.37849/midi.v20i2.228
Maulana, A., Kusumasari, B., & Giyarsih, S. R. (2021). Komunikasi Bencana di Twitter: Studi Kasus Bencana Banjir Perkotaan di Daerah Khusus Ibukota (DKI) Jakarta'. Jurnal Kawistara, 11(2), 129. https://doi.org/10.22146/kawistara.v11i2.58123
Mueller, A., Wood-Doughty, Z., Amir, S., Dredze, M., & Nobles, A. L. (2021). Demographic Representation and Collective Storytelling in the Me Too Twitter Hashtag Activism Movement. Proceedings of the ACM on Human-Computer Interaction, 5(CSCW1), 1-28. https://doi.org/10.1145/3449181
Nofrima, S., Nurmandi, A., Kusuma Dewi, D., & Salahudin, S. (2020). Cyber-activism on the dissemination of #Gejayanmemanggil: Yogyakarta's student movement. Jurnal Studi Komunikasi (Indonesian Journal of Communications Studies), 4(1), 103. https://doi.org/10.25139/jsk.v4i1.2091
Orminski, J., Jr, E. C. T., Detenber, B. H., & Jr, E. C. T. (2021). # sustainablefashion - A Conceptual Framework for Sustainable Fashion Discourse on Twitter. Environmental Communication, 15(1), 115-132. https://doi.org/10.1080/17524032.2020.1802321
Puspita, R. S. D., & Gumelar, G. (2014). Pengaruh Empati Terhadap Perilaku Prososial Dalam Sosial Di Jejaring Sosial Twitter. Jurnal Penelitian Dan Pengukuran Psikologi, 3(1), 1-7.
Rachman, F. F., Nooraeni, R., & Yuliana, L. (2021). Public Opinion of Transportation integrated ( Jak Lingko ) in DKI Jakarta Indonesia. Procedia Computer Science, 179, 696-703. https://doi.org/10.1016/j.procs.2021.01.057
Rahmawati, D. (2014). Media Sosial Dan Demokrasi Di Era Informasi. Jurnal Vokasi Indonesia, 2(2). http://dx.doi.org/10.7454/jvi.v2i2.40
Rakhman, F. R., Ramadhani, R. W., & Fathoni, A. (2021). Digital Movement of Opinion# IndonesiaTerserah on Social Media Twitter in The Covid-19 Pandemic. Jurnal Penelitian Komunikasi, 24(1), 29-44. https://doi.org/10.20422/jpk.v24i1.752
Saini, S., Punhani, R., Bathla, R., & Shukla, V. K. (2019). Sentiment Analysis on Twitter Data using R. 2019 International Conference on Automation, Computational and Technology Management, ICACTM 2019, 68-72. https://doi.org/10.1109/ICACTM.2019.8776685
Scarborough, W. J. (2018). Feminist Twitter and Gender Attitudes/ : Opportunities and Limitations to Using Twitter in the Study of Public Opinion. Socius, 4, 1-16. https://doi.org/10.1177/2378023118780760
Shapiro, G. K., Surian, D., Dunn, A. G., Perry, R., & Kelaher, M. (2017). Comparing human papillomavirus vaccine concerns on Twitter: A cross-sectional study of users in Australia, Canada and the UK. BMJ Open, 7(10), 1-10. https://doi.org/10.1136/bmjopen-2017-016869
Shen, F., Xia, C., & Skoric, M. (2020). Examining the roles of social media and alternative media in social movement participation: A study of Hong Kong's Umbrella Movement. Telematics and Informatics, 47, 101303. https://doi.org/10.1016/j.tele.2019.101303
Signorini, A., Segre, A. M., & Polgreen, P. M. (2011). The use of Twitter to track levels of disease activity and public concern in the U.S. during the influenza A H1N1 pandemic. PLoS ONE, 6(5). https://doi.org/10.1371/journal.pone.0019467
Silver, C., & Lewins, A. (2007). QDA Miner 3 . 2 ( with WordStat & Simstat ) Distinguishing features and functions. Database, 2.
Sotiriadou, P., Brouwers, J., & Le, T. A. (2014). Choosing a qualitative data analysis tool: A comparison of NVivo and Leximancer. Annals of Leisure Research, 17(2), 218-234. https://doi.org/10.1080/11745398.2014.902292
Sukarno, M., & Nur, U. (2022). Public Response On Social Media Narration (Case Study: #PercumaLaporPolisi). International Conference on Government Education Management and Tourism, 1, 1-5.
Suratnoaji, C., & Arianto, I. D. (2020). Public Opinion on Lockdown ( PSBB ) Policy in Overcoming COVID-19 Pandemic in Indonesia/ : Analysis Based on Big Data Twitter. Asian Journal For Public Opinion Research, 8(3), 393-406. http://dx.doi.org/10.15206/ajpor.2020.8.3.393
Takahashi, B., Tandoc, E. C., & Carmichael, C. (2015). Communicating on Twitter during a disaster: An analysis of tweets during Typhoon Haiyan in the Philippines. Computers in Human Behavior, 50, 392-398. https://doi.org/10.1016/j.chb.2015.04.020
Thelwall, M., & Kousha, K. (2021). Researchers' attitudes towards the h-index on Twitter 2007-2020: criticism and acceptance. Scientometrics, 126(6), 5361-5368. https://doi.org/10.1007/s11192-021-03961-8
Tribun News. (2022). Kronologi Kasus Tragedi Stadion Kanjuruhan versi Polisi. https://www.tribunnews.com/nasional/2022/10/07/kronologi-kasus-tragedi-stadion-kanjuruhan-versi-polisi
Vaccari, C., & Valeriani, A. (2018). Digital Political Talk and Political Participation/ : Comparing Established and Third Wave Democracies. Sage Open, 8(2), 1-14. https://doi.org/10.1177/2158244018784986
Wang, R., Liu, W., & Gao, S. (2016). Hashtags and information virality in networked social movement: Examining hashtag co-occurrence patterns. Online Information Review, 40(7), 850-866. https://doi.org/10.1108/OIR-12-2015-0378
Weller, K., Bruns, A., Burgess, J., Mahrt, M., & Puschmann, C. (2014). Twitter and Society. The Journal of Media Innovations, 1(1), 134-137. https://doi.org/10.5617/jmi.v1i1.825
Woolf, N. H., & Silver, C. (2017). Qualitative analysis using MAXQDA: The five-level QDA® method. In Qualitative Analysis Using MAXQDA: The Five-Level QDA Method. Routledge. https://doi.org/10.4324/9781315268569
Xiong, Y., Cho, M., & Boatwright, B. (2019). Hashtag activism and message frames among social movement organizations: Semantic network analysis and thematic analysis of Twitter during the #MeToo movement. Public Relations Review, 45(1), 10-23. https://doi.org/10.1016/j.pubrev.2018.10.014
Zappavigna, M., & Martin, J. R. (2018). #Communing affiliation: Social tagging as a resource for aligning around values in social media. Discourse, Context and Media, 22, 4-12. https://doi.org/10.1016/j.dcm.2017.08.001
Zou, L., Lam, N. S. N., Cai, H., & Qiang, Y. (2018). Mining Twitter Data for Improved Understanding of Disaster Resilience. Annals of the American Association of Geographers, 108(5), 1422-1441. https://doi.org/10.1080/24694452.2017.1421897
DOI: http://dx.doi.org/10.31000/nyimak.v7i1.7209
Article Metrics
Abstract - 1169 PDF - 1116Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Nyimak : Journal of Communication
Communication Science Study Program, Faculty of Social and Political Sciences, Universitas Muhammadiyah Tangerang.
Jl.Mayjen Sutoyo No.2 Kota Tangerang, West Java. Provinsi Banten 15111 Indonesia.
nyimak_journal@umt.ac.id
journalnyimak@gmail.com
Nyimak: Journal of Communication already indexed by:
Nyimak: Journal of Communication is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.